Suppr超能文献

3D 生物打印迷你脑:用于研究细胞相互作用和治疗的神经胶质瘤模型。

3D-Bioprinted Mini-Brain: A Glioblastoma Model to Study Cellular Interactions and Therapeutics.

机构信息

Department of Biomaterials Science and Technology, Targeted Therapeutics Section, Technical Medical Centre, University of Twente, 7500 AE, Enschede, The Netherlands.

Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, 52074, Aachen, Germany.

出版信息

Adv Mater. 2019 Apr;31(14):e1806590. doi: 10.1002/adma.201806590. Epub 2019 Jan 31.

Abstract

Glioblastoma-associated macrophages (GAMs) play a crucial role in the progression and invasiveness of glioblastoma multiforme (GBM); however, the exact crosstalk between GAMs and glioblastoma cells is not fully understood. Furthermore, there is a lack of relevant in vitro models to mimic their interactions. Here, novel 3D-bioprinted mini-brains consisting of glioblastoma cells and macrophages are presented as tool to study the interactions between these two cell types and to test therapeutics that target this interaction. It is demonstrated that in the mini-brains, glioblastoma cells actively recruit macrophages and polarize them into a GAM-specific phenotype, showing clinical relevance to transcriptomic and patient survival data. Furthermore, it is shown that macrophages induce glioblastoma cell progression and invasiveness in the mini-brains. Finally, it is demonstrated how therapeutics can inhibit the interaction between GAMs and tumor cells resulting in reduced tumor growth and more sensitivity to chemotherapy. It is envisioned that this 3D-bioprinted tumor model is used to improve the understanding of tumor biology and for evaluating novel cancer therapeutics.

摘要

胶质母细胞瘤相关巨噬细胞(GAMs)在多形性胶质母细胞瘤(GBM)的进展和侵袭中起着至关重要的作用;然而,GAMs 与胶质母细胞瘤细胞之间的确切串扰尚不完全清楚。此外,缺乏相关的体外模型来模拟它们的相互作用。在这里,提出了新型的由胶质母细胞瘤细胞和巨噬细胞组成的 3D 生物打印迷你脑,作为研究这两种细胞类型相互作用并测试针对这种相互作用的治疗方法的工具。结果表明,在迷你脑中,胶质母细胞瘤细胞积极招募巨噬细胞,并将其极化为 GAM 特异性表型,这与转录组学和患者生存数据具有临床相关性。此外,还表明巨噬细胞在迷你脑中诱导胶质母细胞瘤细胞的进展和侵袭。最后,证明了治疗方法如何抑制 GAMs 和肿瘤细胞之间的相互作用,从而导致肿瘤生长减少和对化疗的敏感性增加。可以预见的是,这种 3D 生物打印肿瘤模型将用于提高对肿瘤生物学的理解,并评估新型癌症治疗方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验