Mao Wenfeng, Yue Wei, Xu Zijia, Wang Jin, Zhang Jingbo, Li Dejun, Zhang Bo, Yang Shaohua, Dai Kehua, Liu Gao, Ai Guo
Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China.
School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China.
ACS Appl Mater Interfaces. 2020 Sep 2;12(35):39282-39292. doi: 10.1021/acsami.0c11282. Epub 2020 Aug 20.
The Hoberman sphere is a stable and stretchable spatial structure with a unique design concept, which can be taken as the ideal prototype of the internal mechanical/conductive skeleton for the anode with large volume change. Herein, MnO nanoparticles are interlaced with a Hoberman sphere-like interconnected carbon nanotube (CNT) network via a facile self-assembly strategy in which MnO can "locally expand" in the CNT network, limit the volume expansion to the interior space, and maintain a stable outer surface of the hybrid particle. Furthermore, an ultrathin uniform ALD-coated TiO shell is adopted to stabilize the solid electrolyte interphase (SEI), provide high electron conductivity and lithium ion (Li) diffusivity with lithiated LiTiO, and enhance the reaction kinetics of the MnO by an "electron-density enhancement effect". With this design, the MnO@CNT/TiO exhibits a high capacity of 1064 mAh g at 0.1 A g, a stable cycling stability over 200 cycles, a superior rate capability, and a commercial-level areal capacity of 4.9 mAh cm. In this way, a novel electrode design strategy is achieved by the Hoberman sphere-like CNT design along with the in situ porous formation, which can not only achieve a high-performance anode for LIBs but also can be widely adapted in a variety of advanced electrode materials for alkali metal ion batteries.
霍伯曼球是一种具有独特设计理念的稳定且可拉伸的空间结构,可被视为具有大体积变化的阳极内部机械/导电骨架的理想原型。在此,通过一种简便的自组装策略,将MnO纳米颗粒与霍伯曼球状互连碳纳米管(CNT)网络交织在一起,其中MnO可在CNT网络中“局部膨胀”,将体积膨胀限制在内部空间,并保持混合颗粒的稳定外表面。此外,采用超薄均匀的ALD包覆TiO壳层来稳定固体电解质界面(SEI),通过锂化的LiTiO提供高电子导电性和锂离子(Li)扩散率,并通过“电子密度增强效应”增强MnO的反应动力学。通过这种设计,MnO@CNT/TiO在0.1 A g下表现出1064 mAh g的高容量、超过200次循环的稳定循环稳定性、优异的倍率性能以及4.9 mAh cm的商业级面积容量。通过这种类似霍伯曼球的CNT设计以及原位形成多孔结构,实现了一种新颖的电极设计策略,这不仅可为锂离子电池制备高性能阳极,还可广泛应用于各种先进的碱金属离子电池电极材料。