Suppr超能文献

基于动态共价化学的即时胶凝系统,用作自修复和可打印的 3D 细胞培养生物墨水。

Instant Gelation System as Self-Healable and Printable 3D Cell Culture Bioink Based on Dynamic Covalent Chemistry.

机构信息

Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin 4, Ireland.

School of Chemical Engineering and Technology (SCET), Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China.

出版信息

ACS Appl Mater Interfaces. 2020 Sep 2;12(35):38918-38924. doi: 10.1021/acsami.0c08567. Epub 2020 Aug 18.

Abstract

The rapid development of additive manufacturing techniques in the field of tissue regeneration offers unprecedented success for artificial tissue and organ fabrication. However, some limitations still remain for current bioinks, such as the compromised cell viability after printing, the low cross-linking efficiency leading to poor printing resolution and speed due to the relatively slow gelation rate, and the requirement of external stimuli for gelation. To address these problems, herein, a biocompatible and printable instant gelation hydrogel system has been developed based on a designed hyperbranched poly(ethylene glycol) (PEG)-based multihydrazide macro-cross-linker (HB-PEG-HDZ) and an aldehyde-functionalized hyaluronic acid (HA-CHO). HB-PEG-HDZ is prepared by the postfunctionalization of hyperbranched PEG-based multivinyl macromer via thiol-ene chemistry. Owing to the high functional group density of HB-PEG-HDZ, the hydrogel can be formed instantly upon mixing the solutions of two components. The reversible cross-linking mechanism between the hydrazide and aldehyde groups endows the hydrogel with shear-thinning and self-healing properties. The minimally toxic components and cross-linking chemistry allow the resulting hydrogel to be a biocompatible niche. Moreover, the fast sol-to-gel transition of the hydrogel, combining all of the advanced characteristics of this platform, protects the cells during the printing procedure, avoids their damage during extrusion, and improves the transplanted cell survival.

摘要

在组织再生领域,添加剂制造技术的快速发展为人工组织和器官制造带来了前所未有的成功。然而,目前的生物墨水仍然存在一些局限性,例如打印后细胞活力受损、交联效率低,导致打印分辨率和速度较低,因为凝胶化速率相对较慢,以及凝胶化需要外部刺激。为了解决这些问题,本文基于设计的超支化聚乙二醇(PEG)基多酰肼大分子交联剂(HB-PEG-HDZ)和醛基化透明质酸(HA-CHO),开发了一种具有生物相容性和可打印的即时凝胶水凝胶系统。HB-PEG-HDZ 通过点击化学的巯基-烯反应,由基于超支化 PEG 的多乙烯基大分子通过后功能化制备。由于 HB-PEG-HDZ 的高官能团密度,两种组分溶液混合后即可立即形成水凝胶。酰肼和醛基之间的可逆交联机制赋予水凝胶剪切变稀和自修复特性。最小毒性的成分和交联化学使所得水凝胶成为一种生物相容性的小生境。此外,水凝胶的快速溶胶-凝胶转变,结合了该平台的所有先进特性,可在打印过程中保护细胞,避免在挤出过程中对细胞造成损伤,并提高移植细胞的存活率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验