Suppr超能文献

机器学习在化学发现中的应用。

Machine learning for chemical discovery.

机构信息

Department of Physics and Materials Science, University of Luxembourg, L-1511, Luxembourg, Luxembourg.

出版信息

Nat Commun. 2020 Aug 17;11(1):4125. doi: 10.1038/s41467-020-17844-8.

Abstract

Discovering chemicals with desired attributes is a long and painstaking process. Curated datasets containing reliable quantum-mechanical properties for millions of molecules are becoming increasingly available. The development of novel machine learning tools to obtain chemical knowledge from these datasets has the potential to revolutionize the process of chemical discovery. Here, I comment on recent breakthroughs in this emerging field and discuss the challenges for the years to come.

摘要

发现具有理想属性的化学物质是一个漫长而艰苦的过程。包含数百万个分子可靠量子力学性质的精选数据集越来越多。开发新的机器学习工具从这些数据集中获取化学知识,有可能彻底改变化学发现的过程。在这里,我评论了这一新兴领域的最新突破,并讨论了未来几年的挑战。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ff5/7431574/c26d1a02b34c/41467_2020_17844_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验