Division of Cardiology, Department of Medicine and Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA.
Azumio, Inc, Redwood City, CA, USA.
Nat Med. 2020 Oct;26(10):1576-1582. doi: 10.1038/s41591-020-1010-5. Epub 2020 Aug 17.
The global burden of diabetes is rapidly increasing, from 451 million people in 2019 to 693 million by 2045. The insidious onset of type 2 diabetes delays diagnosis and increases morbidity. Given the multifactorial vascular effects of diabetes, we hypothesized that smartphone-based photoplethysmography could provide a widely accessible digital biomarker for diabetes. Here we developed a deep neural network (DNN) to detect prevalent diabetes using smartphone-based photoplethysmography from an initial cohort of 53,870 individuals (the 'primary cohort'), which we then validated in a separate cohort of 7,806 individuals (the 'contemporary cohort') and a cohort of 181 prospectively enrolled individuals from three clinics (the 'clinic cohort'). The DNN achieved an area under the curve for prevalent diabetes of 0.766 in the primary cohort (95% confidence interval: 0.750-0.782; sensitivity 75%, specificity 65%) and 0.740 in the contemporary cohort (95% confidence interval: 0.723-0.758; sensitivity 81%, specificity 54%). When the output of the DNN, called the DNN score, was included in a regression analysis alongside age, gender, race/ethnicity and body mass index, the area under the curve was 0.830 and the DNN score remained independently predictive of diabetes. The performance of the DNN in the clinic cohort was similar to that in other validation datasets. There was a significant and positive association between the continuous DNN score and hemoglobin A1c (P ≤ 0.001) among those with hemoglobin A1c data. These findings demonstrate that smartphone-based photoplethysmography provides a readily attainable, non-invasive digital biomarker of prevalent diabetes.
全球糖尿病负担正在迅速增加,从 2019 年的 4.51 亿人增加到 2045 年的 6.93 亿人。2 型糖尿病的隐匿发病会延迟诊断并增加发病率。鉴于糖尿病对血管的多种因素影响,我们假设基于智能手机的光体积描记术可以提供一种广泛可用的糖尿病数字生物标志物。在这里,我们开发了一种深度神经网络 (DNN),使用来自 53870 人的初始队列的基于智能手机的光体积描记术来检测普遍存在的糖尿病(“主要队列”),然后在 7806 人的单独队列(“当代队列”)和三个诊所的 181 名前瞻性入组个体的队列(“诊所队列”)中对其进行验证。DNN 在主要队列中对普遍存在的糖尿病的曲线下面积为 0.766(95%置信区间:0.750-0.782;敏感性 75%,特异性 65%),在当代队列中为 0.740(95%置信区间:0.723-0.758;敏感性 81%,特异性 54%)。当将 DNN 的输出称为 DNN 分数,并与年龄、性别、种族/民族和体重指数一起纳入回归分析时,曲线下面积为 0.830,DNN 分数仍然可以独立预测糖尿病。DNN 在诊所队列中的表现与其他验证数据集相似。在有血红蛋白 A1c 数据的人中,连续的 DNN 分数与血红蛋白 A1c 之间存在显著正相关(P≤0.001)。这些发现表明,基于智能手机的光体积描记术提供了一种易于获得的、非侵入性的普遍存在的糖尿病数字生物标志物。