Suppr超能文献

基于矩阵变量差分网络模型的脑连接改变检测。

Brain connectivity alteration detection via matrix-variate differential network model.

机构信息

School of Statistics, Shandong University of Finance and Economics, Jinan, China.

Institute for Financial Studies, Shandong University, Jinan, China.

出版信息

Biometrics. 2021 Dec;77(4):1409-1421. doi: 10.1111/biom.13359. Epub 2020 Sep 1.

Abstract

Brain functional connectivity reveals the synchronization of brain systems through correlations in neurophysiological measures of brain activities. Growing evidence now suggests that the brain connectivity network experiences alterations with the presence of numerous neurological disorders, thus differential brain network analysis may provide new insights into disease pathologies. The data from neurophysiological measurement are often multidimensional and in a matrix form, posing a challenge in brain connectivity analysis. Existing graphical model estimation methods either assume a vector normal distribution that in essence requires the columns of the matrix data to be independent or fail to address the estimation of differential networks across different populations. To tackle these issues, we propose an innovative matrix-variate differential network (MVDN) model. We exploit the D-trace loss function and a Lasso-type penalty to directly estimate the spatial differential partial correlation matrix and use an alternating direction method of multipliers algorithm for the optimization problem. Theoretical and simulation studies demonstrate that MVDN significantly outperforms other state-of-the-art methods in dynamic differential network analysis. We illustrate with a functional connectivity analysis of an attention deficit hyperactivity disorder dataset. The hub nodes and differential interaction patterns identified are consistent with existing experimental studies.

摘要

脑功能连接通过对脑活动的神经生理测量的相关性揭示了脑系统的同步性。越来越多的证据表明,存在许多神经障碍时,大脑连接网络会发生改变,因此,差异脑网络分析可能为疾病病理学提供新的见解。神经生理测量的数据通常是多维的,呈矩阵形式,这对脑连接分析提出了挑战。现有的图形模型估计方法要么假设向量正态分布,实质上要求矩阵数据的列是独立的,要么未能解决跨不同人群的差异网络的估计问题。为了解决这些问题,我们提出了一种创新的矩阵变量差异网络(MVDN)模型。我们利用 D-trace 损失函数和 Lasso 型惩罚直接估计空间差异偏相关矩阵,并使用增广拉格朗日乘子算法对优化问题进行求解。理论和模拟研究表明,MVDN 在动态差异网络分析中显著优于其他最先进的方法。我们通过对注意力缺陷多动障碍数据集的功能连接分析来说明这一点。所确定的枢纽节点和差异交互模式与现有的实验研究一致。

相似文献

4
Ordinal Pattern: A New Descriptor for Brain Connectivity Networks.序贯模式:脑连接网络的新描述符。
IEEE Trans Med Imaging. 2018 Jul;37(7):1711-1722. doi: 10.1109/TMI.2018.2798500.
6
7
Hyper-connectivity of functional networks for brain disease diagnosis.功能网络的超连接用于脑疾病诊断。
Med Image Anal. 2016 Aug;32:84-100. doi: 10.1016/j.media.2016.03.003. Epub 2016 Mar 24.

本文引用的文献

3
Multiple Matrix Gaussian Graphs Estimation.多元矩阵高斯图估计
J R Stat Soc Series B Stat Methodol. 2018 Nov;80(5):927-950. doi: 10.1111/rssb.12278. Epub 2018 Jun 14.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验