School of Statistics, Shandong University of Finance and Economics, Jinan, China.
Institute for Financial Studies, Shandong University, Jinan, China.
Biometrics. 2021 Dec;77(4):1409-1421. doi: 10.1111/biom.13359. Epub 2020 Sep 1.
Brain functional connectivity reveals the synchronization of brain systems through correlations in neurophysiological measures of brain activities. Growing evidence now suggests that the brain connectivity network experiences alterations with the presence of numerous neurological disorders, thus differential brain network analysis may provide new insights into disease pathologies. The data from neurophysiological measurement are often multidimensional and in a matrix form, posing a challenge in brain connectivity analysis. Existing graphical model estimation methods either assume a vector normal distribution that in essence requires the columns of the matrix data to be independent or fail to address the estimation of differential networks across different populations. To tackle these issues, we propose an innovative matrix-variate differential network (MVDN) model. We exploit the D-trace loss function and a Lasso-type penalty to directly estimate the spatial differential partial correlation matrix and use an alternating direction method of multipliers algorithm for the optimization problem. Theoretical and simulation studies demonstrate that MVDN significantly outperforms other state-of-the-art methods in dynamic differential network analysis. We illustrate with a functional connectivity analysis of an attention deficit hyperactivity disorder dataset. The hub nodes and differential interaction patterns identified are consistent with existing experimental studies.
脑功能连接通过对脑活动的神经生理测量的相关性揭示了脑系统的同步性。越来越多的证据表明,存在许多神经障碍时,大脑连接网络会发生改变,因此,差异脑网络分析可能为疾病病理学提供新的见解。神经生理测量的数据通常是多维的,呈矩阵形式,这对脑连接分析提出了挑战。现有的图形模型估计方法要么假设向量正态分布,实质上要求矩阵数据的列是独立的,要么未能解决跨不同人群的差异网络的估计问题。为了解决这些问题,我们提出了一种创新的矩阵变量差异网络(MVDN)模型。我们利用 D-trace 损失函数和 Lasso 型惩罚直接估计空间差异偏相关矩阵,并使用增广拉格朗日乘子算法对优化问题进行求解。理论和模拟研究表明,MVDN 在动态差异网络分析中显著优于其他最先进的方法。我们通过对注意力缺陷多动障碍数据集的功能连接分析来说明这一点。所确定的枢纽节点和差异交互模式与现有的实验研究一致。