Suppr超能文献

多个高维精度矩阵的联合估计

Joint Estimation of Multiple High-dimensional Precision Matrices.

作者信息

Cai T Tony, Li Hongzhe, Liu Weidong, Xie Jichun

机构信息

Professor of Statistics, Department of Statistics, The Wharton School, University of Pennsylvania, Philadelphia, PA 19104.

Professor of Biostatistics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104.

出版信息

Stat Sin. 2016 Apr;26(2):445-464. doi: 10.5705/ss.2014.256.

Abstract

Motivated by analysis of gene expression data measured in different tissues or disease states, we consider joint estimation of multiple precision matrices to effectively utilize the partially shared graphical structures of the corresponding graphs. The procedure is based on a weighted constrained minimization, which can be effectively implemented by a second-order cone programming. Compared to separate estimation methods, the proposed joint estimation method leads to estimators converging to the true precision matrices faster. Under certain regularity conditions, the proposed procedure leads to an exact graph structure recovery with a probability tending to 1. Simulation studies show that the proposed joint estimation methods outperform other methods in graph structure recovery. The method is illustrated through an analysis of an ovarian cancer gene expression data. The results indicate that the patients with poor prognostic subtype lack some important links among the genes in the apoptosis pathway.

摘要

受在不同组织或疾病状态下测量的基因表达数据分析的推动,我们考虑对多个精度矩阵进行联合估计,以有效利用相应图形的部分共享图形结构。该过程基于加权约束最小化,可通过二阶锥规划有效实现。与单独估计方法相比,所提出的联合估计方法导致估计器更快地收敛到真实精度矩阵。在某些正则性条件下,所提出的过程导致以趋于1的概率精确恢复图形结构。模拟研究表明,所提出的联合估计方法在图形结构恢复方面优于其他方法。通过对卵巢癌基因表达数据的分析来说明该方法。结果表明,预后不良亚型的患者在凋亡途径中的基因之间缺乏一些重要联系。

相似文献

4
Joint Estimation of Precision Matrices in Heterogeneous Populations.异质群体中精度矩阵的联合估计
Electron J Stat. 2016;10(1):1341-1392. doi: 10.1214/16-EJS1137. Epub 2016 May 31.
6
Direct estimation of differential networks.差异网络的直接估计
Biometrika. 2014 Jun;101(2):253-268. doi: 10.1093/biomet/asu009.
7
Sparse Quadratic Approximation for Graph Learning.用于图学习的稀疏二次逼近
IEEE Trans Pattern Anal Mach Intell. 2023 Sep;45(9):11256-11269. doi: 10.1109/TPAMI.2023.3263969. Epub 2023 Aug 7.
8
Joint Learning of Multiple Sparse Matrix Gaussian Graphical Models.联合学习多个稀疏矩阵高斯图模型。
IEEE Trans Neural Netw Learn Syst. 2015 Nov;26(11):2606-20. doi: 10.1109/TNNLS.2014.2384201. Epub 2015 Mar 4.
9
Robust estimation of high-dimensional covariance and precision matrices.高维协方差矩阵和精度矩阵的稳健估计。
Biometrika. 2018 Jun 1;105(2):271-284. doi: 10.1093/biomet/asy011. Epub 2018 Mar 27.

引用本文的文献

本文引用的文献

3
Joint estimation of multiple graphical models.多个图形模型的联合估计
Biometrika. 2011 Mar;98(1):1-15. doi: 10.1093/biomet/asq060. Epub 2011 Feb 9.
5
KEGG for integration and interpretation of large-scale molecular data sets.KEGG 用于整合和解释大规模分子数据集。
Nucleic Acids Res. 2012 Jan;40(Database issue):D109-14. doi: 10.1093/nar/gkr988. Epub 2011 Nov 10.
7
Sparse inverse covariance estimation with the graphical lasso.使用图模型选择法进行稀疏逆协方差估计。
Biostatistics. 2008 Jul;9(3):432-41. doi: 10.1093/biostatistics/kxm045. Epub 2007 Dec 12.
10
Uncovering network systems within protein structures.揭示蛋白质结构中的网络系统。
J Mol Biol. 2003 Dec 5;334(4):781-91. doi: 10.1016/j.jmb.2003.08.061.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验