Estrada Ernesto
Instituto Universitario de Matemáticas y Aplicaciones, Universidad de Zaragoza, 50009 Zaragoza, Spain.
ARAID Foundation, Government of Aragón, 50018 Zaragoza, Spain.
Phys Rep. 2020 Jul 10;869:1-51. doi: 10.1016/j.physrep.2020.07.005. Epub 2020 Jul 28.
Since December 2019 the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has produced an outbreak of pulmonary disease which has soon become a global pandemic, known as COronaVIrus Disease-19 (COVID-19). The new coronavirus shares about 82% of its genome with the one which produced the 2003 outbreak (SARS CoV-1). Both coronaviruses also share the same cellular receptor, which is the angiotensin-converting enzyme 2 (ACE2) one. In spite of these similarities, the new coronavirus has expanded more widely, more faster and more lethally than the previous one. Many researchers across the disciplines have used diverse modeling tools to analyze the impact of this pandemic at global and local scales. This includes a wide range of approaches - deterministic, data-driven, stochastic, agent-based, and their combinations - to forecast the progression of the epidemic as well as the effects of non-pharmaceutical interventions to stop or mitigate its impact on the world population. The physical complexities of modern society need to be captured by these models. This includes the many ways of social contacts - (multiplex) social contact networks, (multilayers) transport systems, metapopulations, etc. - that may act as a framework for the virus propagation. But modeling not only plays a fundamental role in analyzing and forecasting epidemiological variables, but it also plays an important role in helping to find cures for the disease and in preventing contagion by means of new vaccines. The necessity for answering swiftly and effectively the questions: and demands the use of physical modeling of proteins, protein-inhibitors interactions, virtual screening of drugs against virus targets, predicting immunogenicity of small peptides, modeling vaccinomics and vaccine design, to mention just a few. Here, we review these three main areas of modeling research against SARS CoV-2 and COVID-19: (1) epidemiology; (2) drug repurposing; and (3) vaccine design. Therefore, we compile the most relevant existing literature about modeling strategies against the virus to help modelers to navigate this fast-growing literature. We also keep an eye on future outbreaks, where the modelers can find the most relevant strategies used in an emergency situation as the current one to help in fighting future pandemics.
自2019年12月以来,严重急性呼吸综合征冠状病毒2(SARS-CoV-2)引发了一场肺部疾病疫情,该疫情迅速演变成一场全球大流行,即冠状病毒病-19(COVID-19)。这种新型冠状病毒的基因组约82%与引发2003年疫情的病毒(SARS-CoV-1)相同。这两种冠状病毒还共享相同的细胞受体,即血管紧张素转换酶2(ACE2)。尽管存在这些相似之处,但新型冠状病毒的传播范围更广、速度更快、致死性更强。各学科的许多研究人员使用了各种建模工具来分析这场大流行在全球和地方层面的影响。这包括多种方法——确定性方法、数据驱动方法、随机方法、基于主体的方法及其组合——来预测疫情的发展以及非药物干预措施对阻止或减轻其对世界人口影响的效果。这些模型需要捕捉现代社会的物理复杂性。这包括社交接触的多种方式——(多重)社交接触网络、(多层)交通系统、集合种群等——这些可能成为病毒传播的框架。但建模不仅在分析和预测流行病学变量方面发挥着基础性作用,在帮助寻找疾病治疗方法以及通过新型疫苗预防传染方面也发挥着重要作用。要迅速有效地回答“如何治疗”和“如何预防”这些问题,就需要利用蛋白质物理建模、蛋白质-抑制剂相互作用、针对病毒靶点的药物虚拟筛选、预测小肽的免疫原性、疫苗组学建模和疫苗设计等方法,这里仅列举其中一些。在此,我们综述针对SARS-CoV-2和COVID-19的建模研究的这三个主要领域:(1)流行病学;(2)药物再利用;(3)疫苗设计。因此,我们汇编了关于针对该病毒建模策略的最相关现有文献,以帮助建模人员梳理这一快速增长的文献。我们还关注未来的疫情爆发,建模人员可以从中找到在当前这种紧急情况下使用的最相关策略,以帮助应对未来的大流行。