Suppr超能文献

基于记忆的新冠病毒中尺度建模:德国县级时间线

Memory-based meso-scale modeling of Covid-19: County-resolved timelines in Germany.

作者信息

Kergaßner Andreas, Burkhardt Christian, Lippold Dorothee, Kergaßner Matthias, Pflug Lukas, Budday Dominik, Steinmann Paul, Budday Silvia

机构信息

Department of Mechanical Engineering, Institute of Applied Mechanics, Friedrich-Alexander-University Erlangen Nürnberg, 91058 Erlangen, Germany.

Department of Computer Science, Hardware-Software-Co-Design, Friedrich-Alexander-University Erlangen-Nürnberg, 91058 Erlangen, Germany.

出版信息

Comput Mech. 2020;66(5):1069-1079. doi: 10.1007/s00466-020-01883-5. Epub 2020 Aug 3.

Abstract

The COVID-19 pandemic has led to an unprecedented world-wide effort to gather data, model, and understand the viral spread. Entire societies and economies are desperate to recover and get back to normality. However, to this end accurate models are of essence that capture both the viral spread and the courses of disease in space and time at reasonable resolution. Here, we combine a spatially resolved county-level infection model for Germany with a memory-based integro-differential approach capable of directly including medical data on the course of disease, which is not possible when using traditional SIR-type models. We calibrate our model with data on cumulative detected infections and deaths from the Robert-Koch Institute and demonstrate how the model can be used to obtain county- or even city-level estimates on the number of new infections, hospitality rates and demands on intensive care units. We believe that the present work may help guide decision makers to locally fine-tune their expedient response to potential new outbreaks in the near future.

摘要

新冠疫情促使全球展开了前所未有的努力,以收集数据、建立模型并了解病毒传播情况。整个社会和经济都迫切希望恢复并回归正常。然而,要实现这一目标,精确的模型至关重要,这些模型要能以合理的分辨率在空间和时间上捕捉病毒传播及疾病进程。在此,我们将德国县级感染的空间分辨模型与基于记忆的积分微分方法相结合,该方法能够直接纳入疾病进程的医学数据,而这在使用传统的SIR类模型时是无法实现的。我们用来自罗伯特·科赫研究所的累计检测感染和死亡数据对模型进行校准,并展示了该模型如何用于获得县级甚至城市级的新感染病例数、住院率和重症监护病房需求的估计值。我们相信,目前的工作可能有助于指导决策者在不久的将来对潜在的新疫情进行局部微调,做出适当应对。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/87bd/7398641/00aa16cbe86b/466_2020_1883_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验