Suppr超能文献

增材制造可生物降解多孔金属

Additively manufactured biodegradable porous metals.

机构信息

Department of Biomechanical Engineering, Delft University of Technology, Delft 2628 CD, Netherlands.

Department of Anatomy and Cell Biology, University Hospital RWTH Aachen, Aachen 52074, Germany; Department of Orthopedic Surgery, Maastricht UMC+, Maastricht 6202 AZ, Netherlands.

出版信息

Acta Biomater. 2020 Oct 1;115:29-50. doi: 10.1016/j.actbio.2020.08.018. Epub 2020 Aug 25.

Abstract

Partially due to the unavailability of ideal bone substitutes, the treatment of large bony defects remains one of the most important challenges of orthopedic surgery. Additively manufactured (AM) biodegradable porous metals that have emerged since 2018 provide unprecedented opportunities for fulfilling the requirements of an ideal bone implant. First, the multi-scale geometry of these implants can be customized to mimic the human bone in terms of both micro-architecture and mechanical properties. Second, a porous structure with interconnected pores possesses a large surface area, which is favorable for the adhesion and proliferation of cells and, thus, bony ingrowth. Finally, the freeform geometrical design of such biomaterials could be exploited to adjust their biodegradation behavior so as to maintain the structural integrity of the implant during the healing process while ensuring that the implant disappears afterwards, paving the way for full bone regeneration. While the AM biodegradable porous metals that have been studied so far have shown many unique properties as compared to their solid counterparts, the unprecedented degree of flexibility in their geometrical design has not yet been fully exploited to optimize their properties and performance. In order to develop the ideal bone implants, it is important to take advantage of the full potential of AM biodegradable porous metals through detailed and systematic study on their biodegradation behavior, mechanical properties, biocompatibility, and bone regeneration performance. This review paper presents the state of the art in AM biodegradable porous metals and is focused on the effects of material type, processing, geometrical design, and post-AM treatments on the mechanical properties, biodegradation behavior, in vitro biocompatibility, and in vivo bone regeneration performance of AM porous Mg, Fe, and Zn as well as their alloys. We also identify a number of knowledge gaps and the challenges encountered in adopting AM biodegradable porous metals for orthopedic applications and suggest some promising areas for future research.

摘要

部分由于理想骨替代物的缺乏,大骨缺损的治疗仍然是骨科手术中最重要的挑战之一。自 2018 年以来出现的增材制造(AM)可生物降解多孔金属为满足理想骨植入物的要求提供了前所未有的机会。首先,这些植入物的多尺度几何形状可以根据微结构和机械性能进行定制,以模拟人体骨骼。其次,具有连通孔的多孔结构具有较大的表面积,有利于细胞的黏附和增殖,从而促进骨长入。最后,这种生物材料的自由形态几何设计可以被利用来调整其生物降解行为,从而在愈合过程中保持植入物的结构完整性,同时确保植入物随后消失,为完全骨再生铺平道路。尽管迄今为止研究的 AM 可生物降解多孔金属与它们的实心对应物相比具有许多独特的性质,但它们在几何设计方面前所未有的灵活性尚未得到充分利用,无法优化其性质和性能。为了开发理想的骨植入物,重要的是要通过详细和系统地研究其生物降解行为、机械性能、生物相容性和骨再生性能,充分利用 AM 可生物降解多孔金属的全部潜力。本文综述了 AM 可生物降解多孔金属的研究现状,重点介绍了材料类型、加工、几何设计和 AM 后处理对 AM 多孔 Mg、Fe 和 Zn 及其合金的机械性能、生物降解行为、体外生物相容性和体内骨再生性能的影响。我们还确定了一些知识空白,并提出了在采用 AM 可生物降解多孔金属进行骨科应用方面遇到的挑战,并提出了一些有前途的未来研究领域。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验