Peter Szekeres Gergo, Werner Stephan, Guttmann Peter, Spedalieri Cecilia, Drescher Daniela, Živanović Vesna, Montes-Bayón Maria, Bettmer Jörg, Kneipp Janina
Humboldt-Universität zu Berlin, School of Analytical Sciences Adlershof, Albert-Einstein-Str. 5-9, 12489 Berlin, Germany.
Nanoscale. 2020 Sep 7;12(33):17450-17461. doi: 10.1039/d0nr03581e. Epub 2020 Aug 17.
Understanding the formation of the intracellular protein corona of nanoparticles is essential for a wide range of bio- and nanomedical applications. The innermost layer of the protein corona, the hard corona, directly interacts with the nanoparticle surface, and by shielding the surface, it has a deterministic effect on the intracellular processing of the nanoparticle. Here, we combine a direct qualitative analysis of the hard corona composition of gold nanoparticles with a detailed structural characterization of the molecules in their interaction with the nanoparticle surface and relate both to the effects they have on the ultrastructure of living cells and the processing of the gold nanoparticles. Cells from the cell lines HCT-116 and A549 were incubated with 30 nm citrate-stabilized gold nanoparticles and with their aggregates in different culture media. The combined results of mass spectrometry based proteomics, cryo soft X-ray nanotomography and surface-enhanced Raman scattering experiments together revealed different uptake mechanisms in the two cell lines and distinct levels of induced cellular stress when incubation conditions were varied. The data indicate that the different incubation conditions lead to changes in the nanoparticle processing via different protein-nanoparticle interfacial interactions. Specifically, they suggest that the protein-nanoparticle surface interactions depend mainly on the surface properties of the gold nanoparticles, that is, the ζ-potential and the resulting changes in the hydrophilicity of the nanoparticle surface, and are largely independent of the cell line, the uptake mechanism and intracellular processing, or the extent of the induced cellular stress.
了解纳米颗粒细胞内蛋白质冠的形成对于广泛的生物和纳米医学应用至关重要。蛋白质冠的最内层,即硬冠,直接与纳米颗粒表面相互作用,通过屏蔽表面,它对纳米颗粒的细胞内加工具有决定性作用。在这里,我们将对金纳米颗粒硬冠组成的直接定性分析与分子与纳米颗粒表面相互作用的详细结构表征相结合,并将两者与它们对活细胞超微结构和金纳米颗粒加工的影响联系起来。将HCT-116和A549细胞系的细胞与30 nm柠檬酸盐稳定的金纳米颗粒及其聚集体在不同培养基中孵育。基于质谱的蛋白质组学、低温软X射线纳米断层扫描和表面增强拉曼散射实验的综合结果共同揭示了两种细胞系中不同的摄取机制以及当孵育条件改变时诱导的细胞应激的不同水平。数据表明,不同的孵育条件通过不同的蛋白质-纳米颗粒界面相互作用导致纳米颗粒加工的变化。具体而言,它们表明蛋白质-纳米颗粒表面相互作用主要取决于金纳米颗粒的表面性质,即ζ电位和纳米颗粒表面亲水性的相应变化,并且在很大程度上独立于细胞系、摄取机制和细胞内加工,或诱导的细胞应激程度。