Suppr超能文献

天然变异的葡萄糖醛酸转移酶调节秀丽隐杆线虫丙酸血症模型中丙酸的敏感性。

Natural variation in a glucuronosyltransferase modulates propionate sensitivity in a C. elegans propionic acidemia model.

机构信息

Program in Systems Biology and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, United States of America.

Department of Molecular Biosciences, Northwestern University, Evanston, IL, United States of America.

出版信息

PLoS Genet. 2020 Aug 28;16(8):e1008984. doi: 10.1371/journal.pgen.1008984. eCollection 2020 Aug.

Abstract

Mutations in human metabolic genes can lead to rare diseases known as inborn errors of human metabolism. For instance, patients with loss-of-function mutations in either subunit of propionyl-CoA carboxylase suffer from propionic acidemia because they cannot catabolize propionate, leading to its harmful accumulation. Both the penetrance and expressivity of metabolic disorders can be modulated by genetic background. However, modifiers of these diseases are difficult to identify because of the lack of statistical power for rare diseases in human genetics. Here, we use a model of propionic acidemia in the nematode Caenorhabditis elegans to identify genetic modifiers of propionate sensitivity. Using genome-wide association (GWA) mapping across wild strains, we identify several genomic regions correlated with reduced propionate sensitivity. We find that natural variation in the putative glucuronosyltransferase GLCT-3, a homolog of human B3GAT, partly explains differences in propionate sensitivity in one of these genomic intervals. We demonstrate that loss-of-function alleles in glct-3 render the animals less sensitive to propionate. Additionally, we find that C. elegans has an expansion of the glct gene family, suggesting that the number of members of this family could influence sensitivity to excess propionate. Our findings demonstrate that natural variation in genes that are not directly associated with propionate breakdown can modulate propionate sensitivity. Our study provides a framework for using C. elegans to characterize the contributions of genetic background in models of human inborn errors in metabolism.

摘要

人类代谢基因的突变可导致罕见疾病,称为人类代谢的先天错误。例如,由于不能分解丙酸盐,丙酰基辅酶 A 羧化酶任一亚基的功能丧失突变患者会患有丙酸血症,导致丙酸盐的有害积累。代谢紊乱的外显率和表现度均可受遗传背景调节。然而,由于人类遗传学中罕见疾病缺乏统计能力,这些疾病的修饰因子难以确定。在这里,我们使用秀丽隐杆线虫中的丙酸血症模型来鉴定丙酸盐敏感性的遗传修饰因子。通过对野生菌株进行全基因组关联(GWA)作图,我们鉴定出与降低丙酸盐敏感性相关的几个基因组区域。我们发现,假定的葡萄糖醛酸基转移酶 GLCT-3(人类 B3GAT 的同源物)中的自然变异部分解释了这些基因组区间之一中丙酸盐敏感性差异。我们证明 glct-3 的功能丧失等位基因使动物对丙酸盐的敏感性降低。此外,我们发现秀丽隐杆线虫中 glct 基因家族的扩张,表明该家族成员的数量可能会影响对过量丙酸盐的敏感性。我们的研究结果表明,与丙酸盐分解不直接相关的基因中的自然变异可以调节丙酸盐敏感性。我们的研究为使用秀丽隐杆线虫来描述人类代谢先天错误模型中遗传背景的贡献提供了一个框架。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e82/7482840/8d39a8e34821/pgen.1008984.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验