Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
Netherlands Proteomics Centre, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
Nat Commun. 2020 Aug 28;11(1):4332. doi: 10.1038/s41467-020-18168-3.
The group of enteroviruses contains many important pathogens for humans, including poliovirus, coxsackievirus, rhinovirus, as well as newly emerging global health threats such as EV-A71 and EV-D68. Here, we describe an unbiased, system-wide and time-resolved analysis of the proteome and phosphoproteome of human cells infected with coxsackievirus B3. Of the 3,200 proteins quantified throughout the time course, a large amount (25%) shows a significant change, with the majority being downregulated. We find ~85% of the detected phosphosites to be significantly regulated, implying that most changes occur at the post-translational level. Kinase-motif analysis reveals temporal activation patterns of certain protein kinases, with several CDKs/MAPKs immediately active upon the infection, and basophilic kinases, ATM, and ATR engaging later. Through bioinformatics analysis and dedicated experiments, we identify mTORC1 signalling as a major regulation network during enterovirus infection. We demonstrate that inhibition of mTORC1 activates TFEB, which increases expression of lysosomal and autophagosomal genes, and that TFEB activation facilitates the release of virions in extracellular vesicles via secretory autophagy. Our study provides a rich framework for a system-level understanding of enterovirus-induced perturbations at the protein and signalling pathway levels, forming a base for the development of pharmacological inhibitors to treat enterovirus infections.
肠道病毒组包含许多对人类重要的病原体,包括脊髓灰质炎病毒、柯萨奇病毒、鼻病毒,以及新出现的全球健康威胁,如 EV-A71 和 EV-D68。在这里,我们描述了一种针对人细胞感染柯萨奇病毒 B3 的蛋白质组和磷酸化蛋白质组的无偏、系统和时间分辨的分析。在整个时间过程中定量的3200 种蛋白质中,大量(25%)发生了显著变化,其中大多数呈下调趋势。我们发现~85%的检测到的磷酸化位点受到显著调节,这意味着大多数变化发生在翻译后水平。激酶基序分析揭示了某些蛋白激酶的时间激活模式,一些 CDK/MAPKs 在感染后立即被激活,而碱性激酶、ATM 和 ATR 则较晚参与。通过生物信息学分析和专门的实验,我们确定 mTORC1 信号通路是肠道病毒感染过程中的一个主要调控网络。我们证明,mTORC1 的抑制作用激活了 TFEB,增加了溶酶体和自噬体基因的表达,而 TFEB 的激活通过分泌自噬促进了病毒粒子在细胞外囊泡中的释放。我们的研究为深入了解肠道病毒诱导的蛋白质和信号通路水平的干扰提供了丰富的框架,为开发治疗肠道病毒感染的药理学抑制剂奠定了基础。