Suppr超能文献

ADRML:基于流形学习的抗癌药物反应预测。

ADRML: anticancer drug response prediction using manifold learning.

机构信息

Department of Computer and Data Sciences, Faculty of Mathematical Sciences, Shahid Beheshti University, Tehran, Iran.

School of Biological Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran.

出版信息

Sci Rep. 2020 Aug 28;10(1):14245. doi: 10.1038/s41598-020-71257-7.

Abstract

One of the prominent challenges in precision medicine is to select the most appropriate treatment strategy for each patient based on the personalized information. The availability of massive data about drugs and cell lines facilitates the possibility of proposing efficient computational models for predicting anticancer drug response. In this study, we propose ADRML, a model for Anticancer Drug Response Prediction using Manifold Learning to systematically integrate the cell line information with the drug information to make accurate predictions about drug therapeutic. The proposed model maps the drug response matrix into the lower-rank spaces that lead to obtaining new perspectives about cell lines and drugs. The drug response for a new cell line-drug pair is computed using the low-rank features. The evaluation of ADRML performance on various types of cell lines and drug information, in addition to the comparisons with previously proposed methods, shows that ADRML provides accurate and robust predictions. Further investigations about the association between drug response and pathway activity scores reveal that the predicted drug responses can shed light on the underlying drug mechanism. Also, the case studies suggest that the predictions of ADRML about novel cell line-drug pairs are validated by reliable pieces of evidence from the literature. Consequently, the evaluations verify that ADRML can be used in accurately predicting and imputing the anticancer drug response.

摘要

精准医学面临的突出挑战之一是根据个性化信息为每个患者选择最合适的治疗策略。大量关于药物和细胞系的数据的可用性为提出有效的计算模型以预测抗癌药物反应提供了可能。在这项研究中,我们提出了 ADRML,这是一种使用流形学习进行抗癌药物反应预测的模型,旨在系统地将细胞系信息与药物信息集成,以对药物治疗做出准确预测。所提出的模型将药物反应矩阵映射到低阶空间,从而获得关于细胞系和药物的新视角。使用低阶特征计算新的细胞系-药物对的药物反应。对各种类型的细胞系和药物信息的 ADRML 性能评估,以及与先前提出的方法的比较表明,ADRML 提供了准确和稳健的预测。进一步研究药物反应与途径活性评分之间的关联表明,预测的药物反应可以揭示潜在的药物机制。此外,案例研究表明,ADRML 对新型细胞系-药物对的预测通过来自文献的可靠证据得到了验证。因此,评估结果验证了 ADRML 可用于准确预测和推断抗癌药物反应。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a16b/7456328/52bda8833aea/41598_2020_71257_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验