Suppr超能文献

BANDRP:基于指纹和多组学的抗癌药物反应预测的双线性注意力网络。

BANDRP: a bilinear attention network for anti-cancer drug response prediction based on fingerprint and multi-omics.

机构信息

Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha 410083, China.

出版信息

Brief Bioinform. 2024 Sep 23;25(6). doi: 10.1093/bib/bbae493.

Abstract

Predicting anti-cancer drug response can help with personalized cancer treatment and is an important topic in modern oncology research. Although some methods have been used for anti-cancer drug response prediction, how to effectively integrate various features related to cancer cell lines, drugs, and their known responses is still affected by the redundant information of input features and the complex interactions between features. In this study, we propose a bilinear attention model, named BANDRP, based on multiple omics data of cancer cell lines and multiple molecular fingerprints of drugs to predict potential anti-cancer drug responses. Compared with existing models, BANDRP uses gene expression data to calculate pathway enrichment scores to enrich the features of cancer cell lines and can automatically learn the interactive information of cancer cell lines and drugs through bilinear attention networks. Benchmarking and independent tests demonstrate that BANDRP surpasses baseline models and exhibits robust generalization performance. Ablation experiments affirm the optimality of the current model architecture and feature selection scheme for our prediction task. Furthermore, analytical experiments and case studies on unknown anti-cancer drug response predictions underscore BANDRP's potential as a potent and reliable framework for predicting anti-cancer drug response.

摘要

预测抗癌药物反应有助于实现癌症的个体化治疗,是现代肿瘤学研究的重要课题。虽然已经有一些方法用于抗癌药物反应预测,但如何有效地整合与癌细胞系、药物及其已知反应相关的各种特征仍然受到输入特征的冗余信息和特征之间复杂交互的影响。在这项研究中,我们提出了一种基于癌细胞系的多种组学数据和药物的多种分子指纹的双线性注意力模型 BANDRP,用于预测潜在的抗癌药物反应。与现有模型相比,BANDRP 使用基因表达数据计算途径富集分数来丰富癌细胞系的特征,并通过双线性注意力网络自动学习癌细胞系和药物之间的交互信息。基准测试和独立测试表明,BANDRP 优于基线模型,具有稳健的泛化性能。消融实验证实了当前模型架构和特征选择方案对于我们的预测任务的最优性。此外,对未知抗癌药物反应预测的分析实验和案例研究强调了 BANDRP 作为预测抗癌药物反应的强大而可靠框架的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/010e/11479717/f97b8fbec924/bbae493f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验