Suppr超能文献

规范与个体化脑连接在脑深部刺激中的比较。

Normative vs. patient-specific brain connectivity in deep brain stimulation.

机构信息

Movement Disorders & Neuromodulation Unit, Department for Neurology, Charité - University Medicine Berlin, Germany.

Unit of Functional Neurosurgery, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK; Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, UCLH, Queen Square, London WC1N 3BG, UK.

出版信息

Neuroimage. 2021 Jan 1;224:117307. doi: 10.1016/j.neuroimage.2020.117307. Epub 2020 Aug 28.

Abstract

Brain connectivity profiles seeding from deep brain stimulation (DBS) electrodes have emerged as informative tools to estimate outcome variability across DBS patients. Given the limitations of acquiring and processing patient-specific diffusion-weighted imaging data, a number of studies have employed normative atlases of the human connectome. To date, it remains unclear whether patient-specific connectivity information would strengthen the accuracy of such analyses. Here, we compared similarities and differences between patient-specific, disease-matched and normative structural connectivity data and their ability to predict clinical improvement. Data from 33 patients suffering from Parkinson's Disease who underwent surgery at three different centers were retrospectively collected. Stimulation-dependent connectivity profiles seeding from active contacts were estimated using three modalities, namely patient-specific diffusion-MRI data, age- and disease-matched or normative group connectome data (acquired in healthy young subjects). Based on these profiles, models of optimal connectivity were calculated and used to estimate clinical improvement in out of sample data. All three modalities resulted in highly similar optimal connectivity profiles that could largely reproduce findings from prior research based on this present novel multi-center cohort. In a data-driven approach that estimated optimal whole-brain connectivity profiles, out-of-sample predictions of clinical improvements were calculated. Using either patient-specific connectivity (R = 0.43 at p = 0.001), an age- and disease-matched group connectome (R = 0.25, p = 0.048) and a normative connectome based on healthy/young subjects (R = 0.31 at p = 0.028), significant predictions could be made. Our results of patient-specific connectivity and normative connectomes lead to similar main conclusions about which brain areas are associated with clinical improvement. Still, although results were not significantly different, they hint at the fact that patient-specific connectivity may bear the potential of explaining slightly more variance than group connectomes. Furthermore, use of normative connectomes involves datasets with high signal-to-noise acquired on specialized MRI hardware, while clinical datasets as the ones used here may not exactly match their quality. Our findings support the role of DBS electrode connectivity profiles as a promising method to investigate DBS effects and to potentially guide DBS programming.

摘要

脑连接图谱源于深部脑刺激(DBS)电极,已成为一种有价值的工具,可用于评估不同 DBS 患者的治疗效果。由于获取和处理患者特定的弥散加权成像数据存在局限性,许多研究都采用了人类连接组的规范图谱。到目前为止,尚不清楚患者特定的连接信息是否会增强此类分析的准确性。在这里,我们比较了患者特异性、疾病匹配和规范结构连接数据之间的相似性和差异性,及其预测临床改善的能力。回顾性收集了 33 名在三个不同中心接受手术治疗的帕金森病患者的数据。使用三种模式(即患者特定的弥散 MRI 数据、年龄和疾病匹配或规范组连接组数据(在健康年轻受试者中获得))来估计来自活跃触点的刺激依赖性连接图谱。基于这些图谱,计算了最佳连接模型,并将其用于估计在样本外数据中的临床改善。这三种模式都产生了高度相似的最佳连接图谱,这些图谱在很大程度上复制了基于本研究的新多中心队列的先前研究结果。在一种估计最佳全脑连接图谱的数据驱动方法中,计算了样本外的临床改善预测。使用患者特异性连接(p=0.001 时 R=0.43)、年龄和疾病匹配组连接组(p=0.048 时 R=0.25)以及基于健康/年轻受试者的规范连接组(p=0.028 时 R=0.31),都可以进行显著的预测。我们关于患者特异性连接和规范连接组的结果得出了类似的主要结论,即哪些脑区与临床改善相关。尽管结果没有显著差异,但它们暗示了患者特异性连接可能比组连接组具有稍微更好的解释方差的潜力。此外,规范连接组的使用涉及到在专门的 MRI 硬件上获取的具有高信噪比的数据集,而这里使用的临床数据集可能与其质量不完全匹配。我们的研究结果支持 DBS 电极连接图谱作为一种有前途的方法,用于研究 DBS 效果,并有可能指导 DBS 编程。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验