Khare Smith K, Bajaj Varun
Discipline of Electronics and Communication Engineering, PDPM Indian Institute of Information Technology, Design and Manufacturing, Jabalpur, 482005 India.
Comput Methods Programs Biomed. 2020 Dec;197:105722. doi: 10.1016/j.cmpb.2020.105722. Epub 2020 Aug 24.
Mind machine interface (MMI) enables communication with milieu by measuring brain activities. The reliability of MMI systems is highly dependent on the identification of various motor imagery (MI) tasks. Perfect discrimination of brain activities is required to avoid miscommunication. Electroencephalogram (EEG) signals provide a scrupulous solution for the development of MMI. Analysis of multi-channel EEG signals increases the burden of computation drastically. The extraction of hidden information from raw EEG signals is difficult due to its complex nature. A signal is needed to be decomposed and classified for the extraction of hidden information from it. But selecting the uniform decomposition and hyperparameters for decomposition and classification of the signal can lead to information loss and misclassification.
This paper presents a novel method for identifying right-hand and right-foot MI tasks. The method employs a single-channel adaptive decomposition and EEG signal classification. The multi-cluster unsupervised learning method is employed for the selection of significant channel. Further, flexible variational mode decomposition (F-VMD) is used for the adaptive decomposition of signals. The values of decomposition parameters are selected adaptively following the nature of EEG signals. The value of decomposition parameters is used to decompose the signals into narrow-band modes. Hjorth, entropy and quartile based features are elicited from the modes of F-VMD. These features are classified by using a flexible extreme learning machine (F-ELM). F-ELM selects the hyperparameters and kernel adaptively by reducing the classification error.
The performance of the proposed method is evaluated by measuring five performance parameters namely accuracy (ACC), sensitivity (SEN), specificity (SPE), Mathew's correlation coefficient (MCC), and F-1 score. An ACC, SEN, SPE, MCC and F-1 score is obtained as 100%, 100%, 100%, 100%, and 1. The performance parameters obtained by the proposed method prove the superiority over other methodologies using the same data-set.
The proposed method proved to be promising and efficient with a single channel and two features. This framework can be utilized for the development of a real-time mind-machine interface like robotic arm, wheel chairs, etc.
脑机接口(MMI)通过测量大脑活动实现与周围环境的通信。MMI系统的可靠性高度依赖于对各种运动想象(MI)任务的识别。需要对大脑活动进行完美区分以避免误通信。脑电图(EEG)信号为MMI的发展提供了一种严谨的解决方案。多通道EEG信号分析极大地增加了计算负担。由于原始EEG信号的复杂性,从其中提取隐藏信息很困难。需要对信号进行分解和分类以从中提取隐藏信息。但是为信号的分解和分类选择统一的分解方法和超参数可能会导致信息丢失和错误分类。
本文提出了一种识别右手和右脚MI任务的新方法。该方法采用单通道自适应分解和EEG信号分类。采用多聚类无监督学习方法来选择重要通道。此外,使用灵活变分模态分解(F-VMD)对信号进行自适应分解。根据EEG信号的性质自适应选择分解参数的值。分解参数的值用于将信号分解为窄带模态。从F-VMD的模态中提取基于Hjorth、熵和四分位数的特征。使用灵活极限学习机(F-ELM)对这些特征进行分类。F-ELM通过减少分类误差自适应地选择超参数和核。
通过测量五个性能参数,即准确率(ACC)、灵敏度(SEN)、特异性(SPE)、马修相关系数(MCC)和F1分数,对所提方法的性能进行评估。获得的ACC、SEN、SPE、MCC和F1分数分别为100%、100%、100%、100%和1。所提方法获得的性能参数证明了其在使用相同数据集的其他方法中的优越性。
所提方法在单通道和两个特征的情况下被证明是有前景且高效的。该框架可用于开发如机器人手臂、轮椅等实时脑机接口。