Bioelectronics & Microsystems Laboratory, Department of Electrical & Computer Engineering, State University of New York at Binghamton, 4400, Vestal Pkwy East, Binghamton, NY, USA.
Bioelectronics & Microsystems Laboratory, Department of Electrical & Computer Engineering, State University of New York at Binghamton, 4400, Vestal Pkwy East, Binghamton, NY, USA.
Biosens Bioelectron. 2020 Nov 15;168:112518. doi: 10.1016/j.bios.2020.112518. Epub 2020 Aug 20.
A sufficiently fast and simple antimicrobial susceptibility testing (AST) is urgently required to guide effective antibiotic usages and to surveil the antimicrobial resistance rate. Here, we establish a rapid, quantitative, and high-throughput phenotypic AST by measuring electrons transferred from the interiors of microbial cells to external electrodes. Because the transferred electrons are based on microbial metabolic activities and are inversely proportional to the concentration of potential antibiotics, the changes in electrical outputs can be readily used as a transducing signal to efficiently monitor bacterial growth and antibiotic susceptibility. The sensing is performed by directly measuring the total energy, or all the accumulated microbial electricity, generated by microbial fuel cells (MFCs) arranged in a large-capacity disposable, paper-based testbed. A common Gram-negative pathogenic bacterium Pseudomonas aeruginosa wild-type PAO1 and first-line antibiotic gentamicin (GEN) are used in our experiments. The minimum inhibitory concentration (MIC) values generated from our technique are validated by the gold standard broth microdilution (BMD). Our new approach provides quantitative, actionable MIC results within just 5 h because it measures electricity produced by bacterial metabolism instead of the days needed for growth-observation methods. Moreover, as the equipment needed is simple, common, and inexpensive, our test has immense potential to be adopted in the field or resource-limited hospitals and labs to provide insightful assessments for research and clinical practices.
快速、简单的抗菌药物敏感性测试(AST)是指导有效抗生素使用和监测抗菌药物耐药率的迫切需要。在这里,我们通过测量微生物细胞内部转移到外部电极的电子来建立一种快速、定量和高通量的表型 AST。因为转移的电子基于微生物的代谢活动,与潜在抗生素的浓度成反比,所以电输出的变化可以很容易地用作转换信号,有效地监测细菌生长和抗生素敏感性。通过直接测量微生物燃料电池(MFC)在大容量一次性基于纸张的测试平台中产生的总能量(或微生物产生的所有累积电能)来进行检测。在我们的实验中,使用了常见的革兰氏阴性病原菌铜绿假单胞菌野生型 PAO1 和一线抗生素庆大霉素(GEN)。我们的技术产生的最小抑菌浓度(MIC)值通过金标准肉汤微量稀释法(BMD)进行验证。我们的新方法通过测量细菌代谢产生的电量,而不是通过生长观察方法所需的天数,在短短 5 小时内提供定量、可操作的 MIC 结果。此外,由于所需的设备简单、常见且价格低廉,我们的测试具有巨大的潜力,可以在现场或资源有限的医院和实验室中采用,为研究和临床实践提供有见地的评估。