Suppr超能文献

用于新冠疫情时间序列预测的神经网络集成的区间三型模糊聚合器

Interval type-3 fuzzy aggregators for ensembles of neural networks in COVID-19 time series prediction.

作者信息

Castillo Oscar, Castro Juan R, Pulido Martha, Melin Patricia

机构信息

Tijuana Institute of Technology, Tijuana, Mexico.

UABC University, Tijuana, Mexico.

出版信息

Eng Appl Artif Intell. 2022 Sep;114:105110. doi: 10.1016/j.engappai.2022.105110. Epub 2022 Jun 27.

Abstract

In this work we are presenting an approach for fuzzy aggregation in ensembles of neural networks for forecasting. The aggregator is used in an ensemble to combine the outputs of the networks forming the ensemble. This is done in such a way that the total output of the ensemble is better than the outputs of the individual modules. In our approach a fuzzy system is used to estimate the weights that will be assigned to the outputs in the process of combining them in a weighted average calculation. The uncertainty in the process of aggregation is modeled with interval type-3 fuzzy, which in theory can outperform type-2 and type-1. Publicly available data sets of COVID-19 cases for several countries in the world were utilized to test the proposed approach. Simulation results of the COVID-19 data show the potential of the approach to outperform other aggregators in the literature.

摘要

在这项工作中,我们提出了一种用于神经网络集成预测的模糊聚合方法。聚合器用于集成中,以组合构成集成的网络的输出。这样做的目的是使集成的总输出优于各个模块的输出。在我们的方法中,使用模糊系统来估计在加权平均计算中组合输出时将分配给这些输出的权重。聚合过程中的不确定性用区间三型模糊进行建模,理论上它可以优于二型和一型模糊。利用世界上几个国家公开可用的新冠肺炎病例数据集来测试所提出的方法。新冠肺炎数据的模拟结果表明,该方法有潜力在性能上超过文献中的其他聚合器。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1098/9354327/a720a5472aa0/gr1_lrg.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验