Suppr超能文献

作物品种评价的数据综合:综述

Data synthesis for crop variety evaluation. A review.

作者信息

Brown David, Van den Bergh Inge, de Bruin Sytze, Machida Lewis, van Etten Jacob

机构信息

Laboratory of Geo-Information Science and Remote Sensing, Wageningen University & Research, Droevendaalsesteeg 3, 6708 PB Wageningen, The Netherlands.

Bioversity International, Turrialba, 30501 Costa Rica.

出版信息

Agron Sustain Dev. 2020;40(4):25. doi: 10.1007/s13593-020-00630-7. Epub 2020 Jul 9.

Abstract

Crop varieties should fulfill multiple requirements, including agronomic performance and product quality. Variety evaluations depend on data generated from field trials and sensory analyses, performed with different levels of participation from farmers and consumers. Such multi-faceted variety evaluation is expensive and time-consuming; hence, any use of these data should be optimized. Data synthesis can help to take advantage of existing and new data, combining data from different sources and combining it with expert knowledge to produce new information and understanding that supports decision-making. Data synthesis for crop variety evaluation can partly build on extant experiences and methods, but it also requires methodological innovation. We review the elements required to achieve data synthesis for crop variety evaluation, including (1) data types required for crop variety evaluation, (2) main challenges in data management and integration, (3) main global initiatives aiming to solve those challenges, (4) current statistical approaches to combine data for crop variety evaluation and (5) existing data synthesis methods used in evaluation of varieties to combine different datasets from multiple data sources. We conclude that currently available methods have the potential to overcome existing barriers to data synthesis and could set in motion a virtuous cycle that will encourage researchers to share data and collaborate on data-driven research.

摘要

作物品种应满足多种要求,包括农艺性能和产品质量。品种评估依赖于田间试验和感官分析所产生的数据,这些试验和分析在农民和消费者的不同参与程度下进行。这种多方面的品种评估既昂贵又耗时;因此,对这些数据的任何使用都应加以优化。数据综合有助于利用现有数据和新数据,将来自不同来源的数据与专家知识相结合,以产生支持决策的新信息和新认识。作物品种评估的数据综合可以部分基于现有的经验和方法,但也需要方法上的创新。我们回顾了实现作物品种评估数据综合所需的要素,包括:(1)作物品种评估所需的数据类型;(2)数据管理和整合中的主要挑战;(3)旨在解决这些挑战的主要全球倡议;(4)用于作物品种评估数据综合的当前统计方法;以及(5)在品种评估中用于整合来自多个数据源的不同数据集的现有数据综合方法。我们得出结论,目前可用的方法有潜力克服数据综合的现有障碍,并可能启动一个良性循环,鼓励研究人员共享数据并开展数据驱动的研究合作。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验