Suppr超能文献

普通人群中精神疲劳的检测:将击键动力学作为一种现实世界生物标志物的可行性研究。

Detection of Mental Fatigue in the General Population: Feasibility Study of Keystroke Dynamics as a Real-world Biomarker.

作者信息

Acien Alejandro, Morales Aythami, Vera-Rodriguez Ruben, Fierrez Julian, Mondesire-Crump Ijah, Arroyo-Gallego Teresa

机构信息

nQ Medical Inc, Cambridge, MA, United States.

School of Engineering, Universidad Autonoma de Madrid, Madrid, Spain.

出版信息

JMIR Biomed Eng. 2022 Nov 21;7(2):e41003. doi: 10.2196/41003.

Abstract

BACKGROUND

Mental fatigue is a common and potentially debilitating state that can affect individuals' health and quality of life. In some cases, its manifestation can precede or mask early signs of other serious mental or physiological conditions. Detecting and assessing mental fatigue can be challenging nowadays as it relies on self-evaluation and rating questionnaires, which are highly influenced by subjective bias. Introducing more objective, quantitative, and sensitive methods to characterize mental fatigue could be critical to improve its management and the understanding of its connection to other clinical conditions.

OBJECTIVE

This paper aimed to study the feasibility of using keystroke biometrics for mental fatigue detection during natural typing. As typing involves multiple motor and cognitive processes that are affected by mental fatigue, our hypothesis was that the information captured in keystroke dynamics can offer an interesting mean to characterize users' mental fatigue in a real-world setting.

METHODS

We apply domain transformation techniques to adapt and transform TypeNet, a state-of-the-art deep neural network, originally intended for user authentication, to generate a network optimized for the fatigue detection task. All experiments were conducted using 3 keystroke databases that comprise different contexts and data collection protocols.

RESULTS

Our preliminary results showed area under the curve performances ranging between 72.2% and 80% for fatigue versus rested sample classification, which is aligned with previously published models on daily alertness and circadian cycles. This demonstrates the potential of our proposed system to characterize mental fatigue fluctuations via natural typing patterns. Finally, we studied the performance of an active detection approach that leverages the continuous nature of keystroke biometric patterns for the assessment of users' fatigue in real time.

CONCLUSIONS

Our results suggest that the psychomotor patterns that characterize mental fatigue manifest during natural typing, which can be quantified via automated analysis of users' daily interaction with their device. These findings represent a step towards the development of a more objective, accessible, and transparent solution to monitor mental fatigue in a real-world environment.

摘要

背景

精神疲劳是一种常见且可能使人衰弱的状态,会影响个人的健康和生活质量。在某些情况下,其表现可能先于或掩盖其他严重精神或生理状况的早期迹象。如今,检测和评估精神疲劳具有挑战性,因为它依赖于自我评估和评分问卷,而这些极易受到主观偏见的影响。引入更客观、定量且敏感的方法来表征精神疲劳对于改善其管理以及理解其与其他临床状况的关联可能至关重要。

目的

本文旨在研究在自然打字过程中使用击键生物特征识别技术检测精神疲劳的可行性。由于打字涉及受精神疲劳影响的多个运动和认知过程,我们的假设是,击键动态中捕获的信息可以提供一种有趣的方式,在现实环境中表征用户的精神疲劳。

方法

我们应用域变换技术来调整和转换TypeNet,这是一个最初用于用户认证的先进深度神经网络,以生成针对疲劳检测任务优化的网络。所有实验均使用3个击键数据库进行,这些数据库包含不同的背景和数据收集协议。

结果

我们的初步结果显示,疲劳样本与休息样本分类的曲线下面积性能在72.2%至80%之间,这与先前发表的关于日常警觉性和昼夜节律周期的模型一致。这证明了我们提出的系统通过自然打字模式表征精神疲劳波动的潜力。最后,我们研究了一种主动检测方法的性能,该方法利用击键生物特征模式的连续性实时评估用户的疲劳程度。

结论

我们的结果表明,表征精神疲劳的心理运动模式在自然打字过程中会显现出来,这可以通过对用户与设备日常交互的自动分析进行量化。这些发现代表了朝着开发一种更客观、可及且透明的解决方案迈出的一步,以在现实环境中监测精神疲劳。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f4bb/11041424/4858540b04ca/biomedeng_v7i2e41003_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验