Han In Woong, Cho Kyeongwon, Ryu Youngju, Shin Sang Hyun, Heo Jin Seok, Choi Dong Wook, Chung Myung Jin, Kwon Oh Chul, Cho Baek Hwan
Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, South Korea.
Medical Artificial Intelligence Research Center, Department of Medical Device Management and Research, SAIHST, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, South Korea.
World J Gastroenterol. 2020 Aug 14;26(30):4453-4464. doi: 10.3748/wjg.v26.i30.4453.
Despite advancements in operative technique and improvements in postoperative managements, postoperative pancreatic fistula (POPF) is a life-threatening complication following pancreatoduodenectomy (PD). There are some reports to predict POPF preoperatively or intraoperatively, but the accuracy of those is questionable. Artificial intelligence (AI) technology is being actively used in the medical field, but few studies have reported applying it to outcomes after PD.
To develop a risk prediction platform for POPF using an AI model.
Medical records were reviewed from 1769 patients at Samsung Medical Center who underwent PD from 2007 to 2016. A total of 38 variables were inserted into AI-driven algorithms. The algorithms tested to make the risk prediction platform were random forest (RF) and a neural network (NN) with or without recursive feature elimination (RFE). The median imputation method was used for missing values. The area under the curve (AUC) was calculated to examine the discriminative power of algorithm for POPF prediction.
The number of POPFs was 221 (12.5%) according to the International Study Group of Pancreatic Fistula definition 2016. After median imputation, AUCs using 38 variables were 0.68 ± 0.02 with RF and 0.71 ± 0.02 with NN. The maximal AUC using NN with RFE was 0.74. Sixteen risk factors for POPF were identified by AI algorithm: Pancreatic duct diameter, body mass index, preoperative serum albumin, lipase level, amount of intraoperative fluid infusion, age, platelet count, extrapancreatic location of tumor, combined venous resection, co-existing pancreatitis, neoadjuvant radiotherapy, American Society of Anesthesiologists' score, sex, soft texture of the pancreas, underlying heart disease, and preoperative endoscopic biliary decompression. We developed a web-based POPF prediction platform, and this application is freely available at http://popfrisk.smchbp.org.
This study is the first to predict POPF with multiple risk factors using AI. This platform is reliable (AUC 0.74), so it could be used to select patients who need especially intense therapy and to preoperatively establish an effective treatment strategy.
尽管手术技术有所进步,术后管理也有所改善,但术后胰瘘(POPF)仍是胰十二指肠切除术(PD)后一种危及生命的并发症。有一些报告可在术前或术中预测POPF,但这些报告的准确性值得怀疑。人工智能(AI)技术正在医学领域得到积极应用,但很少有研究报道将其应用于PD后的结果预测。
使用AI模型开发一个用于预测POPF的风险预测平台。
回顾了三星医疗中心2007年至2016年期间接受PD的1769例患者的病历。总共38个变量被输入到AI驱动的算法中。用于构建风险预测平台的算法包括随机森林(RF)和带有或不带有递归特征消除(RFE)的神经网络(NN)。缺失值采用中位数插补法。计算曲线下面积(AUC)以检验算法对POPF预测的判别能力。
根据2016年国际胰瘘研究组的定义,POPF的病例数为221例(12.5%)。经过中位数插补后,使用38个变量时,RF的AUC为0.68±0.02,NN的AUC为0.71±0.02。使用带有RFE的NN时的最大AUC为0.74。AI算法确定了16个POPF的风险因素:胰管直径、体重指数、术前血清白蛋白、脂肪酶水平、术中输液量、年龄、血小板计数、肿瘤的胰外位置、联合静脉切除、并存胰腺炎、新辅助放疗、美国麻醉医师协会评分、性别、胰腺质地柔软、基础心脏病以及术前内镜胆道减压。我们开发了一个基于网络的POPF预测平台,该应用程序可在http://popfrisk.smchbp.org上免费获取。
本研究首次使用AI对多个风险因素进行POPF预测。该平台可靠(AUC为0.74),因此可用于选择需要特别强化治疗的患者,并在术前制定有效的治疗策略。