Suppr超能文献

严重急性呼吸综合征冠状病毒2(SARS-CoV-2)非结构蛋白13(Nsp13)解旋酶和Nsp14的结构建模以及美国食品药品监督管理局(FDA)批准的抗病毒药物作为双重抑制剂的重新利用

structure modelling of SARS-CoV-2 Nsp13 helicase and Nsp14 and repurposing of FDA approved antiviral drugs as dual inhibitors.

作者信息

Gurung Arun Bahadur

机构信息

Department of Basic Sciences and Social Sciences, North-Eastern Hill University, Shillong 793022, Meghalaya, India.

出版信息

Gene Rep. 2020 Dec;21:100860. doi: 10.1016/j.genrep.2020.100860. Epub 2020 Aug 28.

Abstract

The high mortality rate from the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections in humans and the lack of effective therapeutic regime for its treatment necessitates the identification of new antivirals. SARS-CoV-2 relies on non-structural proteins such as Nsp13 helicase and nsp14 which are the key components of the replication-transcription complex (RTC) to complete its infectious life cycle. Therefore, targeting these essential viral proteins with small molecules will most likely to halt the disease pathogenesis. The lack of experimental structures of these proteins deters the process of structure-based identification of their specific inhibitors. In the present study, the models of SARS-CoV-2 nsp13 helicase and nsp14 protein were elucidated using a comparative homology modelling approach. These model structures were validated using various parameters such as Ramachandran plot, Verify 3D score, ERRAT score, knowledge-based energy and Z-score. The models were further used for virtual screening of the Food and Drug Administration (FDA) approved antiviral drugs. Simeprevir (SMV), Paritaprevir (PTV) and Grazoprevir (GZR) were the common leads identified which show higher binding affinity to both nsp13 helicase and nsp14 as compared to the control inhibitors and therefore, they might be potential dual-target inhibitors. The leads also establish a network of hydrogen bonds and hydrophobic interactions with the key residues lining the active site pockets. The present findings suggest that these FDA approved antiviral drugs can be subjected to repurposing against SARS-CoV-2 infection after verifying the results through and studies.

摘要

严重急性呼吸综合征冠状病毒2(SARS-CoV-2)感染人类导致的高死亡率以及缺乏有效的治疗方案,使得识别新型抗病毒药物成为必要。SARS-CoV-2依赖非结构蛋白,如Nsp13解旋酶和nsp14,它们是复制转录复合体(RTC)的关键组成部分,以完成其感染生命周期。因此,用小分子靶向这些必需的病毒蛋白很可能会阻止疾病的发病机制。这些蛋白质缺乏实验结构阻碍了基于结构识别其特异性抑制剂的进程。在本研究中,使用比较同源建模方法阐明了SARS-CoV-2 nsp13解旋酶和nsp14蛋白的模型。这些模型结构使用各种参数进行了验证,如拉氏图、Verify 3D分数、ERRAT分数、基于知识的能量和Z分数。这些模型进一步用于对美国食品药品监督管理局(FDA)批准的抗病毒药物进行虚拟筛选。西美瑞韦(SMV)、帕利瑞韦(PTV)和格卡瑞韦(GZR)是鉴定出的常见先导物,与对照抑制剂相比,它们对nsp13解旋酶和nsp14均表现出更高的结合亲和力,因此,它们可能是潜在的双靶点抑制剂。这些先导物还与活性位点口袋内衬的关键残基建立了氢键和疏水相互作用网络。目前的研究结果表明,在通过进一步的实验和研究验证结果后,这些FDA批准的抗病毒药物可用于重新治疗SARS-CoV-2感染。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/feaf/7452913/038e014cdcfe/ga1_lrg.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验