Suppr超能文献

基于计算机的结构建模在预测癌症疫苗开发的免疫原性新表位中的作用。

Role of in silico structural modeling in predicting immunogenic neoepitopes for cancer vaccine development.

机构信息

The Sidney Kimmel Comprehensive Cancer Center, The Skip Viragh Center for Pancreatic Cancer, The Bloomberg-Kimmel Institute for Cancer Immunotherapy, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.

Department of Pharmaceutical and Biological Chemistry, University College London School of Pharmacy, London, United Kingdom.

出版信息

JCI Insight. 2020 Sep 3;5(17):136991. doi: 10.1172/jci.insight.136991.

Abstract

In prior studies, we delineated the landscape of neoantigens arising from nonsynonymous point mutations in a murine pancreatic cancer model, Panc02. We developed a peptide vaccine by targeting neoantigens predicted using a pipeline that incorporates the MHC binding algorithm NetMHC. The vaccine, when combined with immune checkpoint modulators, elicited a robust neoepitope-specific antitumor immune response and led to tumor clearance. However, only a small fraction of the predicted neoepitopes induced T cell immunity, similarly to that reported for neoantigen vaccines tested in clinical studies. While these studies have used binding affinities to MHC I as surrogates for T cell immunity, this approach does not include spatial information on the mutated residue that is crucial for TCR activation. Here, we investigate conformational alterations in and around the MHC binding groove induced by selected minimal neoepitopes, and we examine the influence of a given mutated residue as a function of its spatial position. We found that structural parameters, including the solvent-accessible surface area (SASA) of the neoepitope and the position and spatial configuration of the mutated residue within the sequence, can be used to improve the prediction of immunogenic neoepitopes for inclusion in cancer vaccines.

摘要

在之前的研究中,我们描绘了在小鼠胰腺癌模型 Panc02 中由非同义点突变产生的新抗原的图谱。我们通过靶向使用包含 MHC 结合算法 NetMHC 的管道预测的新抗原开发了一种肽疫苗。该疫苗与免疫检查点调节剂联合使用,引发了强烈的新表位特异性抗肿瘤免疫反应,并导致肿瘤清除。然而,与在临床研究中测试的新抗原疫苗报告的情况类似,只有一小部分预测的新表位诱导了 T 细胞免疫。虽然这些研究使用 MHC I 的结合亲和力作为 T 细胞免疫的替代物,但这种方法不包括 TCR 激活至关重要的突变残基的空间信息。在这里,我们研究了 MHC 结合槽中选定的最小新表位诱导的构象改变,并研究了给定突变残基的空间位置对其的影响。我们发现,结构参数,包括新表位的溶剂可及表面积 (SASA) 和突变残基在序列中的位置和空间构象,可以用于改进对癌症疫苗中包含的免疫原性新表位的预测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f3e3/7526456/14be81b9f637/jciinsight-5-136991-g200.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验