Suppr超能文献

机器学习在预测心房颤动结局方面并未优于传统回归分析:对 ORBIT-AF 和 GARFIELD-AF 注册研究的分析。

Machine learning does not improve upon traditional regression in predicting outcomes in atrial fibrillation: an analysis of the ORBIT-AF and GARFIELD-AF registries.

机构信息

Duke Clinical Research Institute, Durham, NC, USA.

Division of Cardiology, Department of Medicine, Duke University Medical Center, 2301 Erwin Rd, DUMC 3845, Durham, NC 27710, USA.

出版信息

Europace. 2020 Nov 1;22(11):1635-1644. doi: 10.1093/europace/euaa172.

Abstract

AIMS

Prediction models for outcomes in atrial fibrillation (AF) are used to guide treatment. While regression models have been the analytic standard for prediction modelling, machine learning (ML) has been promoted as a potentially superior methodology. We compared the performance of ML and regression models in predicting outcomes in AF patients.

METHODS AND RESULTS

The Outcomes Registry for Better Informed Treatment of Atrial Fibrillation (ORBIT-AF) and Global Anticoagulant Registry in the FIELD (GARFIELD-AF) are population-based registries that include 74 792 AF patients. Models were generated from potential predictors using stepwise logistic regression (STEP), random forests (RF), gradient boosting (GB), and two neural networks (NNs). Discriminatory power was highest for death [STEP area under the curve (AUC) = 0.80 in ORBIT-AF, 0.75 in GARFIELD-AF] and lowest for stroke in all models (STEP AUC = 0.67 in ORBIT-AF, 0.66 in GARFIELD-AF). The discriminatory power of the ML models was similar or lower than the STEP models for most outcomes. The GB model had a higher AUC than STEP for death in GARFIELD-AF (0.76 vs. 0.75), but only nominally, and both performed similarly in ORBIT-AF. The multilayer NN had the lowest discriminatory power for all outcomes. The calibration of the STEP modelswere more aligned with the observed events for all outcomes. In the cross-registry models, the discriminatory power of the ML models was similar or lower than the STEP for most cases.

CONCLUSION

When developed from two large, community-based AF registries, ML techniques did not improve prediction modelling of death, major bleeding, or stroke.

摘要

目的

房颤(AF)结局预测模型用于指导治疗。虽然回归模型一直是预测模型分析的标准,但机器学习(ML)已被推广为一种潜在的优越方法。我们比较了 ML 和回归模型在预测 AF 患者结局中的性能。

方法和结果

Outcomes Registry for Better Informed Treatment of Atrial Fibrillation(ORBIT-AF)和 Global Anticoagulant Registry in the FIELD(GARFIELD-AF)是基于人群的登记处,包含 74792 例 AF 患者。使用逐步逻辑回归(STEP)、随机森林(RF)、梯度提升(GB)和两个神经网络(NN)从潜在预测因子生成模型。死亡的判别能力最高[ORBIT-AF 中 STEP 曲线下面积(AUC)=0.80,GARFIELD-AF 中为 0.75],所有模型中卒中的判别能力最低(ORBIT-AF 中 STEP AUC=0.67,GARFIELD-AF 中为 0.66)。对于大多数结局,ML 模型的判别能力与 STEP 模型相似或较低。GB 模型在 GARFIELD-AF 中的死亡 AUC 高于 STEP(0.76 对 0.75),但仅略有优势,在 ORBIT-AF 中表现相似。多层 NN 对所有结局的判别能力最低。STE P 模型的校准与所有结局的观察事件更一致。在跨登记处模型中,对于大多数病例,ML 模型的判别能力与 STEP 相似或较低。

结论

当从两个大型、基于社区的 AF 登记处开发时,ML 技术并未提高死亡、大出血或卒中的预测模型构建。

相似文献

引用本文的文献

8
Artificial intelligence for the detection, prediction, and management of atrial fibrillation.人工智能在心房颤动的检测、预测和管理中的应用。
Herzschrittmacherther Elektrophysiol. 2022 Mar;33(1):34-41. doi: 10.1007/s00399-022-00839-x. Epub 2022 Feb 11.

本文引用的文献

8
Analysis of Machine Learning Techniques for Heart Failure Readmissions.心力衰竭再入院的机器学习技术分析
Circ Cardiovasc Qual Outcomes. 2016 Nov;9(6):629-640. doi: 10.1161/CIRCOUTCOMES.116.003039. Epub 2016 Nov 8.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验