Suppr超能文献

基于 Dixon 和 ZTE MR 图像的深度神经网络在脑 PET 成像中的衰减校正。

Attenuation correction for brain PET imaging using deep neural network based on Dixon and ZTE MR images.

机构信息

Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, United States of America. Department of Biomedical Engineering, University of California, Davis, CA 95616, United States of America.

出版信息

Phys Med Biol. 2018 Jun 13;63(12):125011. doi: 10.1088/1361-6560/aac763.

Abstract

Positron emission tomography (PET) is a functional imaging modality widely used in neuroscience studies. To obtain meaningful quantitative results from PET images, attenuation correction is necessary during image reconstruction. For PET/MR hybrid systems, PET attenuation is challenging as magnetic resonance (MR) images do not reflect attenuation coefficients directly. To address this issue, we present deep neural network methods to derive the continuous attenuation coefficients for brain PET imaging from MR images. With only Dixon MR images as the network input, the existing U-net structure was adopted and analysis using forty patient data sets shows it is superior to other Dixon-based methods. When both Dixon and zero echo time (ZTE) images are available, we have proposed a modified U-net structure, named GroupU-net, to efficiently make use of both Dixon and ZTE information through group convolution modules when the network goes deeper. Quantitative analysis based on fourteen real patient data sets demonstrates that both network approaches can perform better than the standard methods, and the proposed network structure can further reduce the PET quantification error compared to the U-net structure.

摘要

正电子发射断层扫描(PET)是一种广泛应用于神经科学研究的功能成像方式。为了从 PET 图像中获得有意义的定量结果,在图像重建过程中需要进行衰减校正。对于 PET/MR 混合系统,由于磁共振(MR)图像不能直接反映衰减系数,因此 PET 衰减是一个挑战。为了解决这个问题,我们提出了基于深度神经网络的方法,从 MR 图像中推导出脑 PET 成像的连续衰减系数。仅以 Dixon MR 图像作为网络输入,采用现有的 U 型网络结构,通过对 40 个患者数据集的分析表明,该方法优于其他基于 Dixon 的方法。当 Dixon 和零回波时间(ZTE)图像都可用时,我们提出了一种改进的 U 型网络结构,称为 GroupU-net,通过在网络变深时使用组卷积模块,有效地利用 Dixon 和 ZTE 信息。基于 14 个真实患者数据集的定量分析表明,这两种网络方法都比标准方法表现更好,并且与 U 型网络结构相比,所提出的网络结构可以进一步降低 PET 量化误差。

相似文献

引用本文的文献

7
Generation of Whole-Body FDG Parametric Images from Static PET Images Using Deep Learning.利用深度学习从静态PET图像生成全身FDG参数图像
IEEE Trans Radiat Plasma Med Sci. 2023 May;7(5):465-472. doi: 10.1109/trpms.2023.3243576. Epub 2023 Feb 22.
8
A review of PET attenuation correction methods for PET-MR.PET-MR的PET衰减校正方法综述
EJNMMI Phys. 2023 Sep 11;10(1):52. doi: 10.1186/s40658-023-00569-0.

本文引用的文献

1
ACCELERATING MAGNETIC RESONANCE IMAGING VIA DEEP LEARNING.通过深度学习加速磁共振成像
Proc IEEE Int Symp Biomed Imaging. 2016 Apr;2016:514-517. doi: 10.1109/ISBI.2016.7493320. Epub 2016 Jun 16.
2
Iterative PET Image Reconstruction Using Convolutional Neural Network Representation.基于卷积神经网络表示的迭代 PET 图像重建。
IEEE Trans Med Imaging. 2019 Mar;38(3):675-685. doi: 10.1109/TMI.2018.2869871. Epub 2018 Sep 12.
3
Medical Image Synthesis with Context-Aware Generative Adversarial Networks.基于上下文感知生成对抗网络的医学图像合成
Med Image Comput Comput Assist Interv. 2017 Sep;10435:417-425. doi: 10.1007/978-3-319-66179-7_48. Epub 2017 Sep 4.
8
Iterative Low-Dose CT Reconstruction With Priors Trained by Artificial Neural Network.基于人工神经网络训练先验的迭代低剂量CT重建
IEEE Trans Med Imaging. 2017 Dec;36(12):2479-2486. doi: 10.1109/TMI.2017.2753138. Epub 2017 Sep 15.
9
MR-guided joint reconstruction of activity and attenuation in brain PET-MR.MR 引导的脑 PET-MR 活动和衰减联合重建。
Neuroimage. 2017 Nov 15;162:276-288. doi: 10.1016/j.neuroimage.2017.09.006. Epub 2017 Sep 14.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验