Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, United States of America. Department of Biomedical Engineering, University of California, Davis, CA 95616, United States of America.
Phys Med Biol. 2018 Jun 13;63(12):125011. doi: 10.1088/1361-6560/aac763.
Positron emission tomography (PET) is a functional imaging modality widely used in neuroscience studies. To obtain meaningful quantitative results from PET images, attenuation correction is necessary during image reconstruction. For PET/MR hybrid systems, PET attenuation is challenging as magnetic resonance (MR) images do not reflect attenuation coefficients directly. To address this issue, we present deep neural network methods to derive the continuous attenuation coefficients for brain PET imaging from MR images. With only Dixon MR images as the network input, the existing U-net structure was adopted and analysis using forty patient data sets shows it is superior to other Dixon-based methods. When both Dixon and zero echo time (ZTE) images are available, we have proposed a modified U-net structure, named GroupU-net, to efficiently make use of both Dixon and ZTE information through group convolution modules when the network goes deeper. Quantitative analysis based on fourteen real patient data sets demonstrates that both network approaches can perform better than the standard methods, and the proposed network structure can further reduce the PET quantification error compared to the U-net structure.
正电子发射断层扫描(PET)是一种广泛应用于神经科学研究的功能成像方式。为了从 PET 图像中获得有意义的定量结果,在图像重建过程中需要进行衰减校正。对于 PET/MR 混合系统,由于磁共振(MR)图像不能直接反映衰减系数,因此 PET 衰减是一个挑战。为了解决这个问题,我们提出了基于深度神经网络的方法,从 MR 图像中推导出脑 PET 成像的连续衰减系数。仅以 Dixon MR 图像作为网络输入,采用现有的 U 型网络结构,通过对 40 个患者数据集的分析表明,该方法优于其他基于 Dixon 的方法。当 Dixon 和零回波时间(ZTE)图像都可用时,我们提出了一种改进的 U 型网络结构,称为 GroupU-net,通过在网络变深时使用组卷积模块,有效地利用 Dixon 和 ZTE 信息。基于 14 个真实患者数据集的定量分析表明,这两种网络方法都比标准方法表现更好,并且与 U 型网络结构相比,所提出的网络结构可以进一步降低 PET 量化误差。