Suppr超能文献

通过转录组和临床数据整合鉴定和描述两种一致的骨关节炎亚型。

Identification and characterization of two consistent osteoarthritis subtypes by transcriptome and clinical data integration.

机构信息

Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands.

Delft Bioinformatics Lab, Delft University of Technology, Delft, The Netherlands.

出版信息

Rheumatology (Oxford). 2021 Mar 2;60(3):1166-1175. doi: 10.1093/rheumatology/keaa391.

Abstract

OBJECTIVE

To identify OA subtypes based on cartilage transcriptomic data in cartilage tissue and characterize their underlying pathophysiological processes and/or clinically relevant characteristics.

METHODS

This study includes n = 66 primary OA patients (41 knees and 25 hips), who underwent a joint replacement surgery, from which macroscopically unaffected (preserved, n = 56) and lesioned (n = 45) OA articular cartilage were collected [Research Arthritis and Articular Cartilage (RAAK) study]. Unsupervised hierarchical clustering analysis on preserved cartilage transcriptome followed by clinical data integration was performed. Protein-protein interaction (PPI) followed by pathway enrichment analysis were done for genes significant differentially expressed between subgroups with interactions in the PPI network.

RESULTS

Analysis of preserved samples (n = 56) resulted in two OA subtypes with n = 41 (cluster A) and n = 15 (cluster B) patients. The transcriptomic profile of cluster B cartilage, relative to cluster A (DE-AB genes) showed among others a pronounced upregulation of multiple genes involved in chemokine pathways. Nevertheless, upon investigating the OA pathophysiology in cluster B patients as reflected by differentially expressed genes between preserved and lesioned OA cartilage (DE-OA-B genes), the chemokine genes were significantly downregulated with OA pathophysiology. Upon integrating radiographic OA data, we showed that the OA phenotype among cluster B patients, relative to cluster A, may be characterized by higher joint space narrowing (JSN) scores and low osteophyte (OP) scores.

CONCLUSION

Based on whole-transcriptome profiling, we identified two robust OA subtypes characterized by unique OA, pathophysiological processes in cartilage as well as a clinical phenotype. We advocate that further characterization, confirmation and clinical data integration is a prerequisite to allow for development of treatments towards personalized care with concurrently more effective treatment response.

摘要

目的

根据软骨组织中的软骨转录组数据识别 OA 亚型,并描述其潜在的病理生理过程和/或与临床相关的特征。

方法

本研究纳入了 66 名接受关节置换手术的原发性 OA 患者(41 膝和 25 髋),其中 56 例(保留组)关节软骨宏观上无病变,45 例(病变组)关节软骨有病变[研究关节炎和关节软骨(RAAK)研究]。对保留的软骨转录组进行无监督层次聚类分析,然后整合临床数据。对差异表达基因进行蛋白质-蛋白质相互作用(PPI)分析,对 PPI 网络中具有相互作用的亚组进行通路富集分析。

结果

对保留样本(n=56)的分析结果显示,有两种 OA 亚型,其中 n=41(A 组)和 n=15(B 组)患者。与 A 组(DE-AB 基因)相比,B 组软骨的转录组谱(DE-AB 基因)显示,多个参与趋化因子途径的基因显著上调。然而,当我们研究 B 组患者的 OA 病理生理学时,即保留和病变 OA 软骨之间差异表达的基因(DE-OA-B 基因),趋化因子基因与 OA 病理生理学显著下调。当整合放射学 OA 数据时,我们发现 B 组患者的 OA 表型与 A 组相比,可能以关节间隙狭窄(JSN)评分较高和骨赘(OP)评分较低为特征。

结论

基于全转录组谱分析,我们确定了两种稳健的 OA 亚型,其特征为软骨中独特的 OA、病理生理过程以及临床表型。我们认为,进一步的特征描述、确认和临床数据整合是开发针对个体化治疗的治疗方法的前提,同时也能提高治疗效果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d7f/7937023/13e4b5ca0799/keaa391f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验