Suppr超能文献

一种识别1型糖尿病儿科患者的迭代过程:回顾性观察研究

An Iterative Process for Identifying Pediatric Patients With Type 1 Diabetes: Retrospective Observational Study.

作者信息

Morris Heather Lynne, Donahoo William Troy, Bruggeman Brittany, Zimmerman Chelsea, Hiers Paul, Zhong Victor W, Schatz Desmond

机构信息

Department of Health Outcomes and Biomedical Informatics, University of Florida, Gainesville, FL, United States.

Department of Medicine, University of Florida, Gainesville, FL, United States.

出版信息

JMIR Med Inform. 2020 Sep 4;8(9):e18874. doi: 10.2196/18874.

Abstract

BACKGROUND

The incidence of both type 1 diabetes (T1DM) and type 2 diabetes (T2DM) in children and youth is increasing. However, the current approach for identifying pediatric diabetes and separating by type is costly, because it requires substantial manual efforts.

OBJECTIVE

The purpose of this study was to develop a computable phenotype for accurately and efficiently identifying diabetes and separating T1DM from T2DM in pediatric patients.

METHODS

This retrospective study utilized a data set from the University of Florida Health Integrated Data Repository to identify 300 patients aged 18 or younger with T1DM, T2DM, or that were healthy based on a developed computable phenotype. Three endocrinology residents/fellows manually reviewed medical records of all probable cases to validate diabetes status and type. This refined computable phenotype was then used to identify all cases of T1DM and T2DM in the OneFlorida Clinical Research Consortium.

RESULTS

A total of 295 electronic health records were manually reviewed; of these, 128 cases were found to have T1DM, 35 T2DM, and 132 no diagnosis. The positive predictive value was 94.7%, the sensitivity was 96.9%, specificity was 95.8%, and the negative predictive value was 97.6%. Overall, the computable phenotype was found to be an accurate and sensitive method to pinpoint pediatric patients with T1DM.

CONCLUSIONS

We developed a computable phenotype for identifying T1DM correctly and efficiently. The computable phenotype that was developed will enable researchers to identify a population accurately and cost-effectively. As such, this will vastly improve the ease of identifying patients for future intervention studies.

摘要

背景

儿童和青少年1型糖尿病(T1DM)和2型糖尿病(T2DM)的发病率均在上升。然而,目前用于识别儿童糖尿病并按类型进行区分的方法成本高昂,因为它需要大量的人工操作。

目的

本研究的目的是开发一种可计算的表型,用于准确、高效地识别儿科患者中的糖尿病,并将T1DM与T2DM区分开来。

方法

这项回顾性研究利用了佛罗里达大学健康综合数据存储库中的数据集,根据所开发的可计算表型识别300名18岁及以下患有T1DM、T2DM或健康的患者。三名内分泌科住院医师/研究员人工审查了所有可能病例的病历,以验证糖尿病状态和类型。然后,这种经过优化的可计算表型被用于识别OneFlorida临床研究联盟中的所有T1DM和T2DM病例。

结果

共人工审查了295份电子健康记录;其中,发现128例患有T1DM,35例患有T2DM,132例未确诊。阳性预测值为94.7%,敏感性为96.9%,特异性为95.8%,阴性预测值为97.6%。总体而言,发现可计算表型是一种准确、敏感的方法,可精准识别患有T1DM的儿科患者。

结论

我们开发了一种可计算的表型,用于正确、高效地识别T1DM。所开发的可计算表型将使研究人员能够准确且经济高效地识别出目标人群。因此,这将极大地提高为未来干预研究识别患者的便捷性。

相似文献

7
Development and Evaluation of Computable Phenotypes in Pediatric Epilepsy:3 Cases.开发和评估儿科癫痫可计算表型:3 例。
J Child Neurol. 2021 Oct;36(11):990-997. doi: 10.1177/08830738211019578. Epub 2021 Jul 28.

本文引用的文献

5
Diagnosis and classification of diabetes mellitus.糖尿病的诊断与分类
Diabetes Care. 2014 Jan;37 Suppl 1:S81-90. doi: 10.2337/dc14-S081.
6
The T1D Exchange clinic registry.T1D 交换诊所注册。
J Clin Endocrinol Metab. 2012 Dec;97(12):4383-9. doi: 10.1210/jc.2012-1561. Epub 2012 Sep 20.
7
Definition, epidemiology, risk factors.定义、流行病学、风险因素。
Diabetes Metab. 2010 Dec;36(6 Pt 2):628-51. doi: 10.1016/j.diabet.2010.11.014.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验