Girard Philippe P, Cavalcanti-Adam Elisabetta A, Kemkemer Ralf, Spatz Joachim P
Max-Planck-Institute for Metals Research, Dept. New Materials and Biosystems, Heisenbergstr. 3, D-70569 Stuttgart, Germany and University of Heidelberg, Dept. Biophysical Chemistry, INF 253, D-69120 Heidelberg, Germany.
Soft Matter. 2007 Feb 14;3(3):307-326. doi: 10.1039/b614008d.
Living cells are complex entities whose remarkable, emergent capacity to sense, integrate, and respond to environmental cues relies on an intricate series of interactions among the cell's macromolecular components. Defects in mechanosensing, transduction,or responses underlie many diseases such as cancers, immune disorders, cardiac hypertrophy, genetic malformations, and neuropathies. Here, we highlight micro- and nanotechnology-based tools that have been used to study how chemical and mechanical cues modulate the responses of single cells in contact with the extracellular environment. Understanding the physical aspects of these complex processes at the micro- and nanometer scale could produce profound and fundamental new insights into how the processes of cell migration, metastasis, immune function and other areas which are regulated by mechanical forces.
活细胞是复杂的实体,其感知、整合和响应环境线索的卓越的、新兴能力依赖于细胞大分子成分之间一系列错综复杂的相互作用。机械传感、转导或反应方面的缺陷是许多疾病的基础,如癌症、免疫紊乱、心脏肥大、基因畸形和神经病变。在这里,我们重点介绍了基于微纳技术的工具,这些工具已被用于研究化学和机械线索如何调节与细胞外环境接触的单细胞的反应。在微米和纳米尺度上理解这些复杂过程的物理方面,可能会对细胞迁移、转移、免疫功能以及其他受机械力调节的领域的过程产生深刻而基础的新见解。