Suppr超能文献

具有大气化学合成遗传能力的土壤微生物群落广泛分布于两极地区,且与水分、碳和氮限制相关。

Soil Microbiomes With the Genetic Capacity for Atmospheric Chemosynthesis Are Widespread Across the Poles and Are Associated With Moisture, Carbon, and Nitrogen Limitation.

作者信息

Ray Angelique E, Zhang Eden, Terauds Aleks, Ji Mukan, Kong Weidong, Ferrari Belinda C

机构信息

School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia.

Australian Antarctic Division, Department of Environment, Antarctic Conservation and Management, Kingston, TAS, Australia.

出版信息

Front Microbiol. 2020 Aug 12;11:1936. doi: 10.3389/fmicb.2020.01936. eCollection 2020.

Abstract

Soil microbiomes within oligotrophic cold deserts are extraordinarily diverse. Increasingly, oligotrophic sites with low levels of phototrophic primary producers are reported, leading researchers to question their carbon and energy sources. A novel microbial carbon fixation process termed atmospheric chemosynthesis recently filled this gap as it was shown to be supporting primary production at two Eastern Antarctic deserts. Atmospheric chemosynthesis uses energy liberated from the oxidation of atmospheric hydrogen to drive the Calvin-Benson-Bassham (CBB) cycle through a new chemotrophic form of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO), designated IE. Here, we propose that the genetic determinants of this process; RuBisCO type IE () and high affinity group 1h-[NiFe]-hydrogenase () are widespread across cold desert soils and that this process is linked to dry and nutrient-poor environments. We used quantitative PCR (qPCR) to quantify these genes in 122 soil microbiomes across the three poles; spanning the Tibetan Plateau, 10 Antarctic and three high Arctic sites. Both genes were ubiquitous, being present at variable abundances in all 122 soils examined (, 6.25 × 10-1.66 × 10 copies/g soil; , 6.84 × 10-5.07 × 10 copies/g soil). For the Antarctic and Arctic sites, random forest and correlation analysis against 26 measured soil physicochemical parameters revealed that and genes were associated with lower soil moisture, carbon and nitrogen content. While further studies are required to quantify the rates of trace gas carbon fixation and the organisms involved, we highlight the global potential of desert soil microbiomes to be supported by this new minimalistic mode of carbon fixation, particularly throughout dry oligotrophic environments, which encompass more than 35% of the Earth's surface.

摘要

贫营养型寒冷沙漠中的土壤微生物群落极为多样。越来越多的报道称,存在光养初级生产者水平较低的贫营养型地点,这使得研究人员对其碳源和能源产生了疑问。最近,一种名为大气化学合成的新型微生物碳固定过程填补了这一空白,因为它被证明在两个东南极沙漠中支持初级生产。大气化学合成利用大气中氢气氧化释放的能量,通过一种新的化学营养型核酮糖-1,5-二磷酸羧化酶/加氧酶(RuBisCO),即IE型,来驱动卡尔文-本森-巴斯姆(CBB)循环。在此,我们提出,这一过程的遗传决定因素,即IE型RuBisCO()和高亲和力1h型-[NiFe]-氢化酶()在寒冷沙漠土壤中广泛存在,并且这一过程与干燥且营养贫瘠的环境有关。我们使用定量PCR(qPCR)对跨越三大极地的122个土壤微生物群落中的这些基因进行了定量分析;这些地点包括青藏高原、10个南极地点和3个高北极地点。这两种基因普遍存在,在所检测的所有122种土壤中均有不同丰度(,6.25×10 - 1.66×10拷贝/克土壤;,6.84×10 - 5.07×10拷贝/克土壤)。对于南极和北极地点,针对26种测量的土壤理化参数进行的随机森林和相关性分析表明,和基因与较低的土壤湿度、碳和氮含量相关。虽然需要进一步研究来量化微量气体碳固定的速率以及相关生物,但我们强调,这种新的简约碳固定模式对沙漠土壤微生物群落具有全球潜在支持作用,特别是在整个干燥贫营养环境中,这些环境覆盖了地球表面超过35%的区域。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6027/7437527/4d9ebaec7208/fmicb-11-01936-g001.jpg

相似文献

3
Clearing the air: unraveling past and guiding future research in atmospheric chemosynthesis.
Microbiol Mol Biol Rev. 2023 Dec 20;87(4):e0004823. doi: 10.1128/mmbr.00048-23. Epub 2023 Nov 1.
4
Hydrogen-Oxidizing Bacteria Are Abundant in Desert Soils and Strongly Stimulated by Hydration.
mSystems. 2020 Nov 17;5(6):e01131-20. doi: 10.1128/mSystems.01131-20.
5
Atmospheric trace gases support primary production in Antarctic desert surface soil.
Nature. 2017 Dec 21;552(7685):400-403. doi: 10.1038/nature25014. Epub 2017 Dec 6.
6
Persistence and resistance: survival mechanisms of Candidatus Dormibacterota from nutrient-poor Antarctic soils.
Environ Microbiol. 2021 Aug;23(8):4276-4294. doi: 10.1111/1462-2920.15610. Epub 2021 Jun 3.
7
Microbial communities in dark oligotrophic volcanic ice cave ecosystems of Mt. Erebus, Antarctica.
Front Microbiol. 2015 Mar 11;6:179. doi: 10.3389/fmicb.2015.00179. eCollection 2015.
10
Acidobacteria are active and abundant members of diverse atmospheric H-oxidizing communities detected in temperate soils.
ISME J. 2021 Feb;15(2):363-376. doi: 10.1038/s41396-020-00750-8. Epub 2020 Oct 6.

引用本文的文献

1
sp. nov., a naturally autofluorescent Antarctic fungus.
Mycology. 2025 Jan 2;16(3):1315-1338. doi: 10.1080/21501203.2024.2421319. eCollection 2025.
3
Advocating microbial diversity conservation in Antarctica.
NPJ Biodivers. 2025 Mar 4;4(1):5. doi: 10.1038/s44185-025-00076-8.
5
Ecological significance of Candidatus ARS69 and Gemmatimonadota in the Arctic glacier foreland ecosystems.
Appl Microbiol Biotechnol. 2024 Dec;108(1):128. doi: 10.1007/s00253-023-12991-6. Epub 2024 Jan 15.
6
Clearing the air: unraveling past and guiding future research in atmospheric chemosynthesis.
Microbiol Mol Biol Rev. 2023 Dec 20;87(4):e0004823. doi: 10.1128/mmbr.00048-23. Epub 2023 Nov 1.
8
Prokaryotic Life Associated with Coal-Fire Gas Vents Revealed by Metagenomics.
Biology (Basel). 2023 May 15;12(5):723. doi: 10.3390/biology12050723.
9
Soil Microbiome Influences on Seedling Establishment and Growth of and from Northern Chile.
Plants (Basel). 2022 Oct 14;11(20):2717. doi: 10.3390/plants11202717.

本文引用的文献

1
A widely distributed hydrogenase oxidises atmospheric H during bacterial growth.
ISME J. 2020 Nov;14(11):2649-2658. doi: 10.1038/s41396-020-0713-4. Epub 2020 Jul 9.
2
Distinct assembly mechanisms underlie similar biogeographical patterns of rare and abundant bacteria in Tibetan Plateau grassland soils.
Environ Microbiol. 2020 Jun;22(6):2261-2272. doi: 10.1111/1462-2920.14993. Epub 2020 Apr 2.
3
Lifting the veil on arid-to-hyperarid Antarctic soil microbiomes: a tale of two oases.
Microbiome. 2020 Mar 16;8(1):37. doi: 10.1186/s40168-020-00809-w.
4
Two Chloroflexi classes independently evolved the ability to persist on atmospheric hydrogen and carbon monoxide.
ISME J. 2019 Jul;13(7):1801-1813. doi: 10.1038/s41396-019-0393-0. Epub 2019 Mar 14.
5
Molecular Hydrogen, a Neglected Key Driver of Soil Biogeochemical Processes.
Appl Environ Microbiol. 2019 Mar 6;85(6). doi: 10.1128/AEM.02418-18. Print 2019 Mar 15.
6
Geospatial variation in co-occurrence networks of nitrifying microbial guilds.
Mol Ecol. 2019 Jan;28(2):293-306. doi: 10.1111/mec.14893. Epub 2018 Nov 3.
7
Transitory microbial habitat in the hyperarid Atacama Desert.
Proc Natl Acad Sci U S A. 2018 Mar 13;115(11):2670-2675. doi: 10.1073/pnas.1714341115. Epub 2018 Feb 26.
8
Atmospheric trace gases support primary production in Antarctic desert surface soil.
Nature. 2017 Dec 21;552(7685):400-403. doi: 10.1038/nature25014. Epub 2017 Dec 6.
9
Microbial Diversity of Browning Peninsula, Eastern Antarctica Revealed Using Molecular and Cultivation Methods.
Front Microbiol. 2017 Apr 7;8:591. doi: 10.3389/fmicb.2017.00591. eCollection 2017.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验