Suppr超能文献

无效多态性可能影响冠状动脉疾病风险:一项荟萃分析的证据。

null polymorphisms may affect the risk of coronary artery disease: evidence from a meta-analysis.

作者信息

Su Hongling, Cao Yunshan, Li Jing, Zhu Yan, Ma Xuming

机构信息

Department of Cardiology, Gansu Provincial People's Hospital, No. 204 of Donggang West Road, Lanzhou, 730000 Gansu China.

出版信息

Thromb J. 2020 Sep 1;18:20. doi: 10.1186/s12959-020-00234-x. eCollection 2020.

Abstract

BACKGROUND

Whether glutathione S-transferase () null polymorphisms, namely null, null and null polymorphisms, influence the risk of coronary artery disease (CAD) or not remains unclear. Thus, the authors performed a meta-analysis to more robustly estimate associations between null polymorphisms and the risk of CAD by integrating the results of previous publications.

METHODS

Medline, Embase, Wanfang, VIP and CNKI were searched comprehensively for eligible studies, and 45 genetic association studies were finally selected to be included in this meta-analysis.

RESULTS

We found that null polymorphism was significantly associated with the risk of CAD in overall population (OR = 1.37,  = 0.003) and mixed population (OR = 1.61,  = 0.004), null polymorphism was significantly associated with the risk of CAD in overall population (OR = 1.23,  = 0.03), whereas null polymorphism was significantly associated with the risk of CAD in overall population (OR = 1.23,  = 0.02), Caucasians (OR = 1.23,  = 0.02) and East Asians (OR = 1.38,  < 0.0001).

CONCLUSIONS

This meta-analysis demonstrated that null, null and null polymorphisms were all significantly associated with an increased risk of CAD.

摘要

背景

谷胱甘肽S-转移酶()无效多态性,即无效、无效和无效多态性是否会影响冠状动脉疾病(CAD)的风险尚不清楚。因此,作者进行了一项荟萃分析,通过整合先前发表的研究结果,更有力地估计无效多态性与CAD风险之间的关联。

方法

全面检索了Medline、Embase、万方、维普和中国知网等数据库以查找符合条件的研究,最终选择了45项基因关联研究纳入本荟萃分析。

结果

我们发现,无效多态性在总体人群(OR = 1.37,= 0.003)和混合人群(OR = 1.61,= 0.004)中与CAD风险显著相关,无效多态性在总体人群(OR = 1.23,= 0.03)中与CAD风险显著相关,而无效多态性在总体人群(OR = 1.23,= 0.02)、白种人(OR = 1.23,= 0.02)和东亚人群(OR = 1.38,< 0.0001)中与CAD风险显著相关。

结论

这项荟萃分析表明,无效、无效和无效多态性均与CAD风险增加显著相关。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e0f/7465724/7327f07abd4f/12959_2020_234_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验