Suppr超能文献

用于暴露组研究的无监督降维

Unsupervised dimensionality reduction for exposome research.

作者信息

Kalia Vrinda, Walker Douglas I, Krasnodemski Katherine M, Jones Dean P, Miller Gary W, Kioumourtzoglou Marianthi-Anna

机构信息

Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY 10032.

Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029.

出版信息

Curr Opin Environ Sci Health. 2020 Jun;15:32-38. doi: 10.1016/j.coesh.2020.05.001. Epub 2020 May 19.

Abstract

Understanding the effect of the environment on human health has benefited from progress made in measuring the exposome. High resolution mass spectrometry (HRMS) has made it possible to measure small molecules across a large dynamic range, allowing researchers to study the role of low abundance environmental toxicants in causing human disease. HRMS data have a high dimensional structure (number of predictors >> number of observations), generating information on the abundance of many chemical features (predictors) which may be highly correlated. Unsupervised dimension reduction techniques can allow dimensionality reduction of the various features into components that capture the essence of the variability in the exposome dataset. We illustrate and discuss the relevance of three different unsupervised dimension reduction techniques: principal component analysis, factor analysis, and non-negative matrix factorization. We focus on the utility of each method in understanding the relationship between the exposome and a disease outcome and describe their strengths and limitations. While the utility of these methods is context specific, it remains important to focus on the interpretability of results from each method.

摘要

在测量暴露组方面取得的进展有助于理解环境对人类健康的影响。高分辨率质谱(HRMS)使在大动态范围内测量小分子成为可能,让研究人员能够研究低丰度环境毒物在引发人类疾病中的作用。HRMS数据具有高维结构(预测变量数量 >> 观测值数量),会生成有关许多化学特征(预测变量)丰度的信息,而这些特征可能高度相关。无监督降维技术可以将各种特征的维度降低为能够捕捉暴露组数据集中变异性本质的成分。我们阐述并讨论三种不同无监督降维技术的相关性:主成分分析、因子分析和非负矩阵分解。我们重点关注每种方法在理解暴露组与疾病结局之间关系方面的效用,并描述它们的优势和局限性。虽然这些方法的效用因具体情况而异,但关注每种方法结果的可解释性仍然很重要。

相似文献

1
Unsupervised dimensionality reduction for exposome research.用于暴露组研究的无监督降维
Curr Opin Environ Sci Health. 2020 Jun;15:32-38. doi: 10.1016/j.coesh.2020.05.001. Epub 2020 May 19.

引用本文的文献

4
Seminar: Scalable Preprocessing Tools for Exposomic Data Analysis.研讨会:暴露组数据分析的可扩展预处理工具。
Environ Health Perspect. 2023 Dec;131(12):124201. doi: 10.1289/EHP12901. Epub 2023 Dec 18.
5

本文引用的文献

3
Ten quick tips for effective dimensionality reduction.有效降维的十条快速提示。
PLoS Comput Biol. 2019 Jun 20;15(6):e1006907. doi: 10.1371/journal.pcbi.1006907. eCollection 2019 Jun.
6
Enter the Matrix: Factorization Uncovers Knowledge from Omics.《进入矩阵:从组学中发现知识的因子分解》
Trends Genet. 2018 Oct;34(10):790-805. doi: 10.1016/j.tig.2018.07.003. Epub 2018 Aug 22.
7
The Exposome: Molecules to Populations.外核组学:从分子到人群
Annu Rev Pharmacol Toxicol. 2019 Jan 6;59:107-127. doi: 10.1146/annurev-pharmtox-010818-021315. Epub 2018 Aug 10.
10
Lower Bounds on Paraclique Density.偏斜密度的下界
Discrete Appl Math. 2016 May 11;204:208-212. doi: 10.1016/j.dam.2015.11.010.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验