Zhao Jikai, Xu Youjie, Wang Weiqun, Griffin Jason, Wang Donghai
Department of Biological and Agricultural Engineering, Kansas State University, Manhattan, Kansas 66506, United States.
Department of Food Nutrition Dietetics & Health, Kansas State University, Manhattan, Kansas 66506, United States.
ACS Omega. 2020 Aug 18;5(34):21913-21921. doi: 10.1021/acsomega.0c03135. eCollection 2020 Sep 1.
In this study, the relationships between ethanol yield/concentration and solid loading (6-21%) were investigated to enhance ethanol titer and avoid a random choice of solid loading for simultaneous saccharification and fermentation (SSF). Alkali-pretreated hemp biomass was used for SSF in four scenarios including Case I: 30 filter paper unit (FPU)-cellulase and 140 fungal xylanase unit (FXU)-hemicellulase/g-solid; Case II: 40 FPU-cellulase and 140 FXU-hemicellulase/g-solid; Case III: 30 FPU-cellulase and 140 FXU-hemicellulase/g-solid with 1% Tween80; and Case IV: 30 FPU-cellulase and 140 FXU-hemicellulase/g-solid with particle size reduction (<0.2 mm). Results showed that bioethanol yield and concentration had a negative linear ( = 0.76-0.93) and quadratic ( = 0.96-0.99) correlation with solid loading (6-21%), respectively. As compared to Case I and previous studies, an enhancement in ethanol yield and concentration through increasing cellulase dose (Case II) and adding Tween 80 (Case III) was overestimated, whereas particle size reduction (Case IV) extended the "solid effect", evidenced by the highest ethanol concentration (77 g/L) achieved from SSF at the focus point of a quadratic model. An interpretation of the relationship between ethanol yield/concentration and solid loading not only avoids a blind selection of solid loading for SSF but also reduces extra enzymes and water consumption.
在本研究中,研究了乙醇产率/浓度与固体负载量(6%-21%)之间的关系,以提高乙醇滴度,并避免在同步糖化发酵(SSF)过程中随机选择固体负载量。碱预处理的大麻生物质用于四种情况下的SSF,包括情况I:30滤纸酶活单位(FPU)-纤维素酶和140真菌木聚糖酶活单位(FXU)-半纤维素酶/克固体;情况II:40 FPU-纤维素酶和140 FXU-半纤维素酶/克固体;情况III:30 FPU-纤维素酶和140 FXU-半纤维素酶/克固体加1%吐温80;情况IV:30 FPU-纤维素酶和140 FXU-半纤维素酶/克固体且粒径减小(<0.2毫米)。结果表明,生物乙醇产率和浓度与固体负载量(6%-21%)分别呈负线性(R² = 0.76-0.93)和二次(R² = 0.96-0.99)相关。与情况I和先前的研究相比,通过增加纤维素酶剂量(情况II)和添加吐温80(情况III)来提高乙醇产率和浓度的效果被高估了,而粒径减小(情况IV)扩展了“固体效应”,二次模型焦点处的SSF实现了最高乙醇浓度(77克/升)证明了这一点。对乙醇产率/浓度与固体负载量之间关系的解释不仅避免了在SSF中盲目选择固体负载量,还减少了额外的酶和水消耗。