Suppr超能文献

基于机器学习的临床心肌病分类和诊断。

Machine learning-based classification and diagnosis of clinical cardiomyopathies.

机构信息

Bioinformatics & Artificial Intelligence Laboratory, Center for Hypertension and Precision Medicine, Program in Physiological Genomics, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio.

Bioinformatics Program, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio.

出版信息

Physiol Genomics. 2020 Sep 1;52(9):391-400. doi: 10.1152/physiolgenomics.00063.2020. Epub 2020 Aug 3.

Abstract

Dilated cardiomyopathy (DCM) and ischemic cardiomyopathy (ICM) are two common types of cardiomyopathies leading to heart failure. Accurate diagnostic classification of different types of cardiomyopathies is critical for precision medicine in clinical practice. In this study, we hypothesized that machine learning (ML) can be used as a novel diagnostic approach to analyze cardiac transcriptomic data for classifying clinical cardiomyopathies. RNA-Seq data of human left ventricle tissues were collected from 41 DCM patients, 47 ICM patients, and 49 nonfailure controls (NF) and tested using five ML algorithms: support vector machine with radial kernel (svmRadial), neural networks with principal component analysis (pcaNNet), decision tree (DT), elastic net (ENet), and random forest (RF). Initial ML classifications achieved ~93% accuracy (svmRadial) for NF vs. DCM, ~82% accuracy (RF) for NF vs. ICM, and ~80% accuracy (ENet and svmRadial) for DCM vs. ICM. Next, 50 highly contributing genes (HCGs) for classifying NF and DCM, 68 HCGs for classifying NF and ICM, and 59 HCGs for classifying DCM and ICM were selected for retraining ML models. Impressively, the retrained models achieved ~90% accuracy (RF) for NF vs. DCM, ~90% accuracy (pcaNNet) for NF vs. ICM, and ~85% accuracy (pcaNNet and RF) for DCM vs. ICM. Pathway analyses further confirmed the involvement of those selected HCGs in cardiac dysfunctions such as cardiomyopathies, cardiac hypertrophies, and fibrosis. Overall, our study demonstrates the promising potential of using artificial intelligence via ML modeling as a novel approach to achieve a greater level of precision in diagnosing different types of cardiomyopathies.

摘要

扩张型心肌病(DCM)和缺血性心肌病(ICM)是导致心力衰竭的两种常见心肌病类型。准确诊断不同类型的心肌病对于临床实践中的精准医学至关重要。在这项研究中,我们假设机器学习(ML)可以作为一种新的诊断方法,用于分析心脏转录组数据以对临床心肌病进行分类。从 41 名 DCM 患者、47 名 ICM 患者和 49 名非衰竭对照(NF)的人类左心室组织中收集了 RNA-Seq 数据,并使用 5 种 ML 算法进行了测试:具有径向核的支持向量机(svmRadial)、基于主成分分析的神经网络(pcaNNet)、决策树(DT)、弹性网络(ENet)和随机森林(RF)。初始 ML 分类对 NF 与 DCM 的准确率约为 93%(svmRadial),对 NF 与 ICM 的准确率约为 82%(RF),对 DCM 与 ICM 的准确率约为 80%(ENet 和 svmRadial)。接下来,选择了 50 个对 NF 和 DCM 分类有重要贡献的基因(HCGs)、68 个对 NF 和 ICM 分类有重要贡献的 HCGs 和 59 个对 DCM 和 ICM 分类有重要贡献的 HCGs 用于重新训练 ML 模型。令人印象深刻的是,重新训练的模型对 NF 与 DCM 的准确率约为 90%(RF),对 NF 与 ICM 的准确率约为 90%(pcaNNet),对 DCM 与 ICM 的准确率约为 85%(pcaNNet 和 RF)。通路分析进一步证实了这些选定的 HCGs 参与了心脏功能障碍,如心肌病、心脏肥大和纤维化。总体而言,我们的研究表明,通过 ML 建模使用人工智能具有很大的潜力,可以实现对不同类型心肌病进行更高水平的精确诊断。

相似文献

1
Machine learning-based classification and diagnosis of clinical cardiomyopathies.基于机器学习的临床心肌病分类和诊断。
Physiol Genomics. 2020 Sep 1;52(9):391-400. doi: 10.1152/physiolgenomics.00063.2020. Epub 2020 Aug 3.

引用本文的文献

本文引用的文献

9
Dilated Cardiomyopathy: Genetic Determinants and Mechanisms.扩张型心肌病:遗传决定因素与机制
Circ Res. 2017 Sep 15;121(7):731-748. doi: 10.1161/CIRCRESAHA.116.309396.
10
Artificial Intelligence in Precision Cardiovascular Medicine.人工智能在精准心血管医学中的应用。
J Am Coll Cardiol. 2017 May 30;69(21):2657-2664. doi: 10.1016/j.jacc.2017.03.571.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验