Department of Biotechnology, University of Suwon, Hwaseong 18323, Korea.
Plasma Bioscience Research Center/Applied Plasma Medicine Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Korea.
Int J Mol Sci. 2020 Sep 7;21(18):6544. doi: 10.3390/ijms21186544.
In the field of tissue engineering, there are several issues to consider when designing biomaterials for implants, including cellular interaction, good biocompatibility, and biochemical activity. Biomimetic mineralization has gained considerable attention as an emerging approach for the synthesis of biocompatible materials with complex shapes, categorized organization, controlled shape, and size in aqueous environments. Understanding biomineralization strategies could enhance opportunities for novel biomimetic mineralization approaches. In this regard, mussel-inspired biomaterials have recently attracted many researchers due to appealing features, such as strong adhesive properties on moist surfaces, improved cell adhesion, and immobilization of bioactive molecules via catechol chemistry. This molecular designed approach has been a key point in combining new functionalities into accessible biomaterials for biomedical applications. Polydopamine (PDA) has emerged as a promising material for biomaterial functionalization, considering its simple molecular structure, independence of target materials, cell interactions for adhesion, and robust reactivity for resulting functionalization. In this review, we highlight the strategies for using PDA to induce the biomineralization of hydroxyapatite (HA) on the surface of various implant materials with good mechanical strength and corrosion resistance. We also discuss the interactions between the PDA-HA coating, and several cell types that are intricate in many biomedical applications, involving bone defect repair, bone regeneration, cell attachment, and antibacterial activity.
在组织工程领域,设计用于植入物的生物材料时需要考虑几个问题,包括细胞相互作用、良好的生物相容性和生物化学活性。仿生矿化作为一种新兴的方法,在水相环境中合成具有复杂形状、分类组织、可控形状和尺寸的生物相容性材料方面引起了相当大的关注。了解生物矿化策略可以为新型仿生矿化方法提供更多机会。在这方面,由于具有吸引人的特点,例如在潮湿表面上具有很强的粘附性能、改善细胞粘附和通过儿茶酚化学固定生物活性分子,贻贝类仿生材料最近吸引了许多研究人员的关注。这种分子设计方法是将新功能结合到可用于生物医学应用的生物材料中的关键。聚多巴胺(PDA)因其简单的分子结构、对目标材料的独立性、用于粘附的细胞相互作用以及对功能化的强反应性而成为生物材料功能化的有前途的材料。在这篇综述中,我们强调了使用 PDA 在具有良好机械强度和耐腐蚀性的各种植入材料表面诱导羟基磷灰石(HA)生物矿化的策略。我们还讨论了 PDA-HA 涂层与几种细胞类型之间的相互作用,这些相互作用在许多生物医学应用中都很复杂,涉及骨缺损修复、骨再生、细胞附着和抗菌活性。