Suppr超能文献

使用聚(3,4-乙撑二氧噻吩)/聚苯乙烯磺酸盐(PEDOT/PSS)电极膜制造的纸质致动器的驱动特性。

Actuation Properties of Paper Actuators Fabricated Using PEDOT/PSS Electrode Films.

作者信息

Wu Yujiao, Minamikawa Hiroyuki, Nakazumi Tomoka, Hara Yusuke

机构信息

Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST).

Department of Nano-science and Nano-Technology, Graduate School of Pure and Applied Sciences, University of Tsukuba.

出版信息

J Oleo Sci. 2020 Oct 7;69(10):1331-1337. doi: 10.5650/jos.ess20113. Epub 2020 Sep 10.

Abstract

The development of actuators for power sources is essential for the efficient manipulation of fluids in microfluidics systems. In this work, a capacitor-type three-layer paper actuator was fabricated by sandwiching a polyelectrolyte layer between two films of poly(3,4-ethylenedioxythiophene) doped with poly(4-styrenesulfonate) (PEDOT/PSS). The paper actuator exhibited stable large electromechanical deformations in bilateral symmetry under alternating square-wave electric field. The actuation properties were examined in a function of voltage (±0.5, ±1, ±1.5, ±2, and ±2.5 V) and frequency (1, 0.5, 0.2, and 0.05 Hz). In addition, the PEDOT/PSS electrode films with different thicknesses were prepared, and the effects of actuator thickness on actuation properties were examined. As a result, it was found that the actuator displacement increased considerably with reducing actuator thickness. In addition, the actuator with a thickness of 48 μm demonstrated a maximum displacement of 5.8 mm at a voltage of 1.5 V and a frequency of 0.05 Hz. The proposed actuator can be potentially used in the development of power sources for micropumps and check valves of microfluidic devices.

摘要

用于微流体系统中流体高效操控的动力源致动器的开发至关重要。在这项工作中,通过将聚电解质层夹在两层掺杂有聚(4-苯乙烯磺酸盐)的聚(3,4-乙撑二氧噻吩)(PEDOT/PSS)薄膜之间,制备了一种电容式三层纸质致动器。该纸质致动器在交变方波电场下呈现出双边对称的稳定大机电变形。研究了致动特性与电压(±0.5、±1、±1.5、±2和±2.5 V)和频率(1、0.5、0.2和0.05 Hz)的函数关系。此外,制备了不同厚度的PEDOT/PSS电极薄膜,并研究了致动器厚度对致动特性的影响。结果发现,随着致动器厚度的减小,致动器位移显著增加。此外,厚度为48μm的致动器在1.5 V电压和0.05 Hz频率下表现出最大位移为5.8 mm。所提出的致动器可潜在地用于微流体装置的微型泵和止回阀的动力源开发。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验