Department of Electrical Engineering, Stanford University, 350 Jane Stanford Way, Stanford, CA, 94305, USA.
Nat Commun. 2020 Sep 9;11(1):4517. doi: 10.1038/s41467-020-18346-3.
Optical imaging techniques, such as light detection and ranging (LiDAR), are essential tools in remote sensing, robotic vision, and autonomous driving. However, the presence of scattering places fundamental limits on our ability to image through fog, rain, dust, or the atmosphere. Conventional approaches for imaging through scattering media operate at microscopic scales or require a priori knowledge of the target location for 3D imaging. We introduce a technique that co-designs single-photon avalanche diodes, ultra-fast pulsed lasers, and a new inverse method to capture 3D shape through scattering media. We demonstrate acquisition of shape and position for objects hidden behind a thick diffuser (≈6 transport mean free paths) at macroscopic scales. Our technique, confocal diffuse tomography, may be of considerable value to the aforementioned applications.
光学成像技术,如光探测和测距(LiDAR),是遥感、机器人视觉和自动驾驶等领域的重要工具。然而,散射的存在对我们在雾、雨、灰尘或大气中进行成像的能力构成了根本性的限制。用于穿透散射介质成像的传统方法在微观尺度上运行,或者需要对目标位置有先验知识才能进行 3D 成像。我们引入了一种技术,该技术对单光子雪崩二极管、超快速脉冲激光器和一种新的反演方法进行了协同设计,以穿透散射介质获取 3D 形状。我们在宏观尺度上演示了对隐藏在厚扩散器(≈6 个输运平均自由程)后面的物体的形状和位置的获取。我们的技术,共焦漫反射层析成像,可能对上述应用具有重要价值。