Suppr超能文献

深度学习和多变量模型筛选适合短期出院的腔内血管修复术患者。

Deep Learning and Multivariable Models Select EVAR Patients for Short-Stay Discharge.

作者信息

Zarkowsky Devin S, Nejim Besma, Hubara Itay, Hicks Caitlin W, Goodney Philip P, Malas Mahmoud B

机构信息

Division of Vascular and Endovascular Surgery, 1878University of Colorado, Aurora, CO, USA.

Division of Vascular Surgery and Endovascular Therapy, 1466The Johns Hopkins Medical Institutions, Baltimore, MD, USA.

出版信息

Vasc Endovascular Surg. 2021 Jan;55(1):18-25. doi: 10.1177/1538574420954299. Epub 2020 Sep 10.

Abstract

OBJECTIVES

We sought to develop a prediction score with data from the Vascular Quality Initiative (VQI) EVAR in efforts to assist endovascular specialists in deciding whether or not a patient is appropriate for short-stay discharge.

BACKGROUND

Small series describe short-stay discharge following elective EVAR. Our study aims to quantify characteristics associated with this decision.

METHODS

The VQI EVAR and NSQIP datasets were queried. Patients who underwent elective EVAR recorded in VQI, between 1/2010-5/2017 were split 2:1 into test and analytic cohorts via random number assignment. Cross-reference with the Medicare claims database confirmed all-cause mortality data. Bootstrap sampling was employed in model. Deep learning algorithms independently evaluated each dataset as a sensitivity test.

RESULTS

Univariate outcomes, including 30-day survival, were statistically worse in the DD group when compared to the SD group (all P < 0.05). A prediction score, SD-EVAR, derived from the VQI EVAR dataset including pre- and intra-op variables that discriminate between SD and DD was externally validated in NSQIP (Pearson correlation coefficient = 0.79, P < 0.001); deep learning analysis concurred. This score suggests 66% of EVAR patients may be appropriate for short-stay discharge. A free smart phone app calculating short-stay discharge potential is available through QxMD Calculate https://qxcalc.app.link/vqidis.

CONCLUSIONS

Selecting patients for short-stay discharge after EVAR is possible without increasing harm. The majority of infrarenal AAA patients treated with EVAR in the United States fit a risk profile consistent with short-stay discharge, representing a significant cost-savings potential to the healthcare system.

摘要

目的

我们试图利用血管质量倡议(VQI)腹主动脉瘤腔内修复术(EVAR)的数据开发一种预测评分,以帮助血管介入专家决定患者是否适合短期出院。

背景

小规模研究描述了择期EVAR后的短期出院情况。我们的研究旨在量化与该决策相关的特征。

方法

查询了VQI EVAR和国家外科质量改进计划(NSQIP)数据集。2010年1月至2017年5月期间在VQI中记录的接受择期EVAR的患者通过随机数分配以2:1的比例分为测试队列和分析队列。与医疗保险索赔数据库交叉核对确认全因死亡率数据。在模型中采用自助抽样。深度学习算法独立评估每个数据集作为敏感性测试。

结果

与短期出院(SD)组相比,延迟出院(DD)组的单因素结局,包括30天生存率,在统计学上更差(所有P<0.05)。从VQI EVAR数据集中得出的预测评分SD-EVAR,包括区分SD和DD的术前和术中变量,在NSQIP中得到外部验证(皮尔逊相关系数=0.79,P<0.001);深度学习分析结果一致。该评分表明66%的EVAR患者可能适合短期出院。可通过QxMD Calculate(https://qxcalc.app.link/vqidis)获得一款计算短期出院可能性的免费智能手机应用程序。

结论

在不增加危害的情况下,选择EVAR术后患者进行短期出院是可行的。在美国,大多数接受EVAR治疗的肾下型腹主动脉瘤患者符合与短期出院一致的风险特征,这对医疗系统具有显著的成本节约潜力。

相似文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验