Guo Xu, Li Qiuyang, Liu Yawei, Jin Tao, Chen Yubin, Guo Liejin, Lian Tianquan
International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China.
Department of Chemistry, Emory University, 1515 Dickey Drive, NE, Atlanta, Georgia 30322, United States.
ACS Appl Mater Interfaces. 2020 Oct 7;12(40):44769-44776. doi: 10.1021/acsami.0c12931. Epub 2020 Sep 23.
Semiconductor-catalyst heterostructures have shown promising performances for light-driven H generation, although further development of these materials is hindered by the lack of cost-effective and efficient catalysts. In this paper, we adopt a colloidal method to prepare few-layer WSe nanosheets without exfoliation and apply them as catalysts for forming heterostructures with a wide range of semiconductor absorbers (CdS nanorods, CdSe/CdS dot-in-rods, TiO nanoparticles, g-CN nanosheets). These WSe-semiconductor heterostructures show enhanced solar-to-hydrogen conversion efficiencies compared to semiconductors without WSe. The detailed mechanism of this enhancement has been investigated using WSe nanosheet-decorated CdSe/CdS dot-in-rods as a model system, which display ∼5.5-fold higher hydrogen generation apparent quantum efficiency compared to free CdSe/CdS dot-in-rods. Transient absorption spectroscopic studies reveal efficient charge separation in WSe-decorated CdSe/CdS dot-in-rods, suggesting its key role in enhancing the H generation efficiency of WSe-semiconductor heterostructures. This work demonstrates the great potentials of WSe nanosheets as catalysts for light-driven hydrogen production and the important effect of forming WSe-semiconductor heterostructures in facilitating charge separation and photocatalysis.
半导体 - 催化剂异质结构在光驱动产氢方面已展现出有前景的性能,尽管这些材料的进一步发展因缺乏经济高效的催化剂而受阻。在本文中,我们采用一种胶体方法制备了无需剥离的少层WSe纳米片,并将其用作与多种半导体吸收剂(CdS纳米棒、CdSe/CdS核壳纳米棒、TiO纳米颗粒、g-CN纳米片)形成异质结构的催化剂。与不含WSe的半导体相比,这些WSe - 半导体异质结构表现出更高的太阳能到氢能的转换效率。以WSe纳米片修饰的CdSe/CdS核壳纳米棒作为模型体系,对这种增强的详细机制进行了研究,与游离的CdSe/CdS核壳纳米棒相比,其产氢表观量子效率提高了约5.5倍。瞬态吸收光谱研究揭示了WSe修饰的CdSe/CdS核壳纳米棒中有效的电荷分离,表明其在提高WSe - 半导体异质结构产氢效率中的关键作用。这项工作证明了WSe纳米片作为光驱动制氢催化剂的巨大潜力,以及形成WSe - 半导体异质结构在促进电荷分离和光催化中的重要作用。