Suppr超能文献

一维CdS-Pt异质结构中纳米棒长度依赖的光驱动产氢

Nanorod length-dependent photodriven H2 production in 1D CdS-Pt heterostructures.

作者信息

Liu Yawei, Yang Wenxing, Chen Qiaoli, Xie Zhaoxiong, Lian Tianquan

机构信息

Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia Nebraska 30322, USA.

Center of Artificial Photosynthesis for Solar Fuels, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China.

出版信息

J Chem Phys. 2023 Sep 14;159(10). doi: 10.1063/5.0157927.

Abstract

Colloidal quantum confined semiconductor-metal heterostructures are promising candidates for solar energy conversion because their light absorbing semiconductor and catalytic components can be independently tuned and optimized. Although the light-to-hydrogen efficiencies of such systems have shown interesting dependences on the morphologies of the semiconductor and metal domains, the mechanisms of such dependences are poorly understood. Here, we use Pt tipped 0D CdS quantum dots (with ∼4.6 nm diameter) and 1D CdS nanorods (of ∼13.8, 27.8, 66.6, and 88.9 nm average rod lengths) as a model system to study the distance-dependence of charge separation and charge recombination times and their impacts on photo-driven H2 production. The H2 generation quantum efficiency increases from 0.2% ± 0.0% in quantum dots to 28.9% ± 0.4% at a rod length of 28 nm and shows negligible changes at longer rod lengths. The half-life time of electron transfer from CdS to Pt increases monotonically with rod length, from 0.7 ± 0.1 in quantum dots to 170.2 ± 29.5 ps in the longest rods, corresponding to a slight decrease in electron transfer quantum efficiency from 92% to 81%. The amplitude-weighted average lifetime of charge recombination of the electron in Pt with the hole in CdS increases from 4.7 ± 0.4 µs in quantum dots to 149 ± 34 µs in 28 nm nanorods, and the lifetime does not increase further in longer rods, resembling the trend in the observed H2 generation quantum efficiency. Our result suggests that the competition of the charge recombination process with the hole removal by the sacrificial electron donor plays a dominant role in the observed nanorod length dependent overall light driven H2 generation quantum efficiency.

摘要

胶体量子受限半导体 - 金属异质结构是太阳能转换的有前途的候选材料,因为它们的光吸收半导体和催化组分可以独立调节和优化。尽管此类系统的光到氢效率已显示出对半导体和金属域形态的有趣依赖性,但这种依赖性的机制却知之甚少。在这里,我们使用铂尖端的0D CdS量子点(直径约4.6 nm)和1D CdS纳米棒(平均棒长约13.8、27.8、66.6和88.9 nm)作为模型系统,研究电荷分离和电荷复合时间的距离依赖性及其对光驱动H2产生的影响。H2产生量子效率从量子点中的0.2%±0.0%增加到棒长为28 nm时的28.9%±0.4%,并且在更长的棒长时变化可忽略不计。从CdS到Pt的电子转移半衰期随棒长单调增加,从量子点中的0.7±0.1增加到最长棒中的170.2±29.5 ps,对应电子转移量子效率从92%略有下降至81%。Pt中电子与CdS中空穴的电荷复合的幅度加权平均寿命从量子点中的4.7±0.4 µs增加到28 nm纳米棒中的149±34 µs,并且在更长的棒中寿命不再进一步增加,类似于观察到的H2产生量子效率的趋势。我们的结果表明,电荷复合过程与牺牲电子供体去除空穴之间的竞争在观察到的纳米棒长度依赖性整体光驱动H2产生量子效率中起主导作用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验