文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

人工智能在放射治疗中的应用概述:实施和质量保证建议。

Overview of artificial intelligence-based applications in radiotherapy: Recommendations for implementation and quality assurance.

机构信息

Department Oncology, Laboratory of Experimental Radiotherapy, KU Leuven, Belgium; Department of Radiation Oncology, UZ Leuven, Belgium.

Faculty of Medicine and Health Sciences, University of Antwerp, Belgium; Department of Radiation Oncology, Iridium Cancer Network, Wilrijk (Antwerp), Belgium.

出版信息

Radiother Oncol. 2020 Dec;153:55-66. doi: 10.1016/j.radonc.2020.09.008. Epub 2020 Sep 10.


DOI:10.1016/j.radonc.2020.09.008
PMID:32920005
Abstract

Artificial Intelligence (AI) is currently being introduced into different domains, including medicine. Specifically in radiation oncology, machine learning models allow automation and optimization of the workflow. A lack of knowledge and interpretation of these AI models can hold back wide-spread and full deployment into clinical practice. To facilitate the integration of AI models in the radiotherapy workflow, generally applicable recommendations on implementation and quality assurance (QA) of AI models are presented. For commonly used applications in radiotherapy such as auto-segmentation, automated treatment planning and synthetic computed tomography (sCT) the basic concepts are discussed in depth. Emphasis is put on the commissioning, implementation and case-specific and routine QA of AI models needed for a methodical introduction in clinical practice.

摘要

人工智能(AI)目前正在被引入不同的领域,包括医学。具体在放射肿瘤学中,机器学习模型可以实现工作流程的自动化和优化。对这些 AI 模型缺乏了解和解释可能会阻碍它们在临床实践中的广泛和全面应用。为了促进 AI 模型在放射治疗工作流程中的整合,提出了一般适用于 AI 模型实施和质量保证(QA)的建议。对于放射治疗中常用的应用,如自动分割、自动治疗计划和合成计算机断层扫描(sCT),深入讨论了基本概念。重点介绍了在临床实践中系统引入 AI 模型所需的调试、实施以及针对具体病例和常规的 QA。

相似文献

[1]
Overview of artificial intelligence-based applications in radiotherapy: Recommendations for implementation and quality assurance.

Radiother Oncol. 2020-12

[2]
Artificial intelligence in radiotherapy.

Semin Cancer Biol. 2022-11

[3]
Artificial Intelligence for Radiotherapy Auto-Contouring: Current Use, Perceptions of and Barriers to Implementation.

Clin Oncol (R Coll Radiol). 2023-4

[4]
NRG Oncology Assessment of Artificial Intelligence Deep Learning-Based Auto-segmentation for Radiation Therapy: Current Developments, Clinical Considerations, and Future Directions.

Int J Radiat Oncol Biol Phys. 2024-5-1

[5]
Applications of artificial intelligence for machine- and patient-specific quality assurance in radiation therapy: current status and future directions.

J Radiat Res. 2024-7-22

[6]
Applications of artificial intelligence in radiophysics.

J Cancer Res Ther. 2021-12

[7]
Artificial Intelligence in Radiation Oncology.

Hematol Oncol Clin North Am. 2019-9-11

[8]
Revolutionizing radiation therapy: the role of AI in clinical practice.

J Radiat Res. 2024-1-19

[9]
Africa's readiness for artificial intelligence in clinical radiotherapy delivery: Medical physicists to lead the way.

Phys Med. 2023-9

[10]
Synergizing Expertise and Technology: The Artificial intelligence Revolution in Radiotherapy for Personalized and Precise Cancer Treatment.

Gulf J Oncolog. 2024-1

引用本文的文献

[1]
A review of image processing and analysis of computed tomography images using deep learning methods.

Phys Eng Sci Med. 2025-9-3

[2]
Application of artificial intelligence in medical imaging for tumor diagnosis and treatment: a comprehensive approach.

Discov Oncol. 2025-8-26

[3]
Comparative Analysis of Atlas and Neural Network Autosegmentation Methods for Pediatric Craniospinal Irradiation With the Development of a Knowledge-Based Quality Assurance Tool.

Adv Radiat Oncol. 2025-7-28

[4]
Can Deep Learning-Based Auto-Contouring Software Achieve Accurate Pelvic Volume Delineation in Volumetric Image-Guided Radiotherapy for Prostate Cancer? A Preliminary Multicentric Analysis.

Curr Oncol. 2025-5-30

[5]
Uncertainties in outcome modelling in radiation oncology.

Phys Imaging Radiat Oncol. 2025-5-7

[6]
Current AI technologies in cancer diagnostics and treatment.

Mol Cancer. 2025-6-2

[7]
Deep Learning for Automated Ventricle and Periventricular Space Segmentation on CT and T1CE MRI in Neuro-Oncology Patients.

Cancers (Basel). 2025-5-8

[8]
Deep learning-powered radiotherapy dose prediction: clinical insights from 622 patients across multiple sites tumor at a single institution.

Radiat Oncol. 2025-5-19

[9]
Contouring in transition: perceptions of AI-based autocontouring by radiation oncologists and medical physicists in German-speaking countries.

Strahlenther Onkol. 2025-4-28

[10]
Quality Management for Radiation Oncology In-House Software Products.

Bioengineering (Basel). 2025-3-29

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索