Department Oncology, Laboratory of Experimental Radiotherapy, KU Leuven, Belgium; Department of Radiation Oncology, UZ Leuven, Belgium.
Faculty of Medicine and Health Sciences, University of Antwerp, Belgium; Department of Radiation Oncology, Iridium Cancer Network, Wilrijk (Antwerp), Belgium.
Radiother Oncol. 2020 Dec;153:55-66. doi: 10.1016/j.radonc.2020.09.008. Epub 2020 Sep 10.
Artificial Intelligence (AI) is currently being introduced into different domains, including medicine. Specifically in radiation oncology, machine learning models allow automation and optimization of the workflow. A lack of knowledge and interpretation of these AI models can hold back wide-spread and full deployment into clinical practice. To facilitate the integration of AI models in the radiotherapy workflow, generally applicable recommendations on implementation and quality assurance (QA) of AI models are presented. For commonly used applications in radiotherapy such as auto-segmentation, automated treatment planning and synthetic computed tomography (sCT) the basic concepts are discussed in depth. Emphasis is put on the commissioning, implementation and case-specific and routine QA of AI models needed for a methodical introduction in clinical practice.
人工智能(AI)目前正在被引入不同的领域,包括医学。具体在放射肿瘤学中,机器学习模型可以实现工作流程的自动化和优化。对这些 AI 模型缺乏了解和解释可能会阻碍它们在临床实践中的广泛和全面应用。为了促进 AI 模型在放射治疗工作流程中的整合,提出了一般适用于 AI 模型实施和质量保证(QA)的建议。对于放射治疗中常用的应用,如自动分割、自动治疗计划和合成计算机断层扫描(sCT),深入讨论了基本概念。重点介绍了在临床实践中系统引入 AI 模型所需的调试、实施以及针对具体病例和常规的 QA。
Semin Cancer Biol. 2022-11
Clin Oncol (R Coll Radiol). 2023-4
J Cancer Res Ther. 2021-12
Hematol Oncol Clin North Am. 2019-9-11
J Radiat Res. 2024-1-19
Phys Eng Sci Med. 2025-9-3
Phys Imaging Radiat Oncol. 2025-5-7
Mol Cancer. 2025-6-2
Bioengineering (Basel). 2025-3-29