Suppr超能文献

过渡中的轮廓描绘:德语国家放射肿瘤学家和医学物理学家对基于人工智能的自动轮廓描绘的看法

Contouring in transition: perceptions of AI-based autocontouring by radiation oncologists and medical physicists in German-speaking countries.

作者信息

Vorbach Samuel M, Putz Florian, Ganswindt Ute, Janssen Stefan, Grohmann Maximilian, Knippen Stefan, Heinemann Felix, Shafie Rami A El, Peeken Jan C

机构信息

Department of Radiation Oncology, Medical University of Innsbruck, Innsbruck, Austria.

Digitalization and Artificial Intelligence Working Group, German Society for Radiation Oncology, Berlin, Germany.

出版信息

Strahlenther Onkol. 2025 Apr 28. doi: 10.1007/s00066-025-02403-1.

Abstract

BACKGROUND

Artificial intelligence (AI)-based autocontouring software has the potential to revolutionize radiotherapy planning. In recent years, several AI-based autocontouring solutions with many advantages have emerged; however, their clinical use raises several challenges related to implementation, quality assurance, validation, and training. The aim of this study was to investigate the current use of AI-based autocontouring software and the associated expectations and hopes of radiation oncologists and medical physicists in German-speaking countries.

METHODS

A digital survey consisting of 24 questions including single-choice, multiple-choice, free-response, and five-point Likert scale rankings was conducted using the online tool umfrageonline.com (enuvo GmbH, Pfäffikon SZ, Switzerland).

RESULTS

A total of 163 participants completed the survey, with approximately two thirds reporting use of AI-based autocontouring software in routine clinical practice. Of the users, 92% found the software helpful in clinical practice. More than 90% reported using AI solutions to contour organs at risk (OARs) in the brain, head and neck, thorax, abdomen, and pelvis. The majority (88.8%) reported time savings in OAR delineation, with approximately 41% estimating savings of 11-20 min per case. However, nearly half of the respondents expressed concern about the potential degradation of resident training in sectional anatomy understanding. Of respondents, 60% would welcome guidelines for implementation and use of AI-based contouring aids from their respective radiation oncology societies. Respondents' free-text comments emphasized the need for careful monitoring and postprocessing of AI-delivered autocontours as well as concerns about overreliance on AI and its impact on the development of young physicians' contouring and planning skills.

CONCLUSION

Artificial intelligence-based autocontouring software shows promise for integration into radiation oncology workflows, with respondents recognizing its potential for time saving and standardization. However, successful implementation will require ongoing education and curriculum adaptation to ensure AI enhances, rather than replaces, clinical expertise.

摘要

背景

基于人工智能(AI)的自动轮廓勾画软件有潜力彻底改变放射治疗计划。近年来,出现了几种具有诸多优势的基于AI的自动轮廓勾画解决方案;然而,其临床应用引发了一些与实施、质量保证、验证和培训相关的挑战。本研究的目的是调查德语国家放射肿瘤学家和医学物理学家对基于AI的自动轮廓勾画软件的当前使用情况以及相关的期望和希望。

方法

使用在线工具umfrageonline.com(瑞士普费菲孔SZ的enuvo GmbH)进行了一项包含24个问题的数字调查,这些问题包括单项选择、多项选择、自由回答和五点李克特量表排名。

结果

共有163名参与者完成了调查,约三分之二的人报告在日常临床实践中使用基于AI的自动轮廓勾画软件。在使用者中,92%的人认为该软件在临床实践中有用。超过90%的人报告使用AI解决方案来勾画脑、头颈部、胸部、腹部和骨盆的危及器官(OAR)。大多数人(88.8%)报告在OAR勾画中节省了时间,约41%的人估计每例节省11 - 20分钟。然而,近一半的受访者对住院医师在断层解剖理解方面的培训可能退化表示担忧。60%的受访者欢迎各自的放射肿瘤学会提供基于AI的轮廓勾画辅助工具的实施和使用指南。受访者的自由文本评论强调了对AI生成的自动轮廓进行仔细监测和后处理的必要性,以及对过度依赖AI及其对年轻医生轮廓勾画和计划技能发展的影响的担忧。

结论

基于人工智能的自动轮廓勾画软件显示出有望整合到放射肿瘤学工作流程中,受访者认识到其节省时间和标准化的潜力。然而,成功实施将需要持续的教育和课程调整,以确保AI增强而非取代临床专业知识。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验