Suppr超能文献

人工设计的滤波器可能优于机器学习的滤波器。

Human-Designed Filters May Outperform Machine-Learned Filters.

作者信息

Zeng Gengsheng L

机构信息

Utah Valley University, Orem, Utah, 84058, USA.

University of Utah, Salt Lake City, Utah, 84108, USA.

出版信息

Arch Biomed Eng Biotechnol. 2022;7(1).

Abstract

Machine-learned image processing systems in medical imaging have shown better results than those obtained by traditional human-designed techniques. The success of machine learning techniques inspires humans to design better systems. The convolutional neural network (CNN) has a multi-channel architecture, which the conventional filters do not have. This paper proposes that by borrowing the multi-channel architecture, the human-designed denoising filter can have better performance than the machined-learned version. We illustrate the feasibility of this idea with a toy example in a sinogram denoising task in the area of tomography.

摘要

医学成像中的机器学习图像处理系统已显示出比传统人工设计技术更好的效果。机器学习技术的成功激发人们去设计更好的系统。卷积神经网络(CNN)具有多通道架构,这是传统滤波器所没有的。本文提出,通过借鉴多通道架构,人工设计的去噪滤波器可以具有比机器学习版本更好的性能。我们用一个断层扫描领域正弦图去噪任务中的简单示例来说明这一想法的可行性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d52d/10080663/64cae617a144/nihms-1886377-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验