Koo Jahyun, Kim Sung Bong, Choi Yeon Sik, Xie Zhaoqian, Bandodkar Amay J, Khalifeh Jawad, Yan Ying, Kim Hojun, Pezhouh Maryam Kherad, Doty Karen, Lee Geumbee, Chen Yu-Yu, Lee Seung Min, D'Andrea Dominic, Jung Kimin, Lee KunHyuck, Li Kan, Jo Seongbin, Wang Heling, Kim Jae-Hwan, Kim Jeonghyun, Choi Sung-Geun, Jang Woo Jin, Oh Yong Suk, Park Inkyu, Kwak Sung Soo, Park Ji-Hyeon, Hong Doosun, Feng Xue, Lee Chi-Hwan, Banks Anthony, Leal Cecilia, Lee Hyuck Mo, Huang Yonggang, Franz Colin K, Ray Wilson Z, MacEwan Matthew, Kang Seung-Kyun, Rogers John A
School of Biomedical Engineering, Korea University, Seoul 02841, Republic of Korea.
Department of Materials Science Engineering, Northwestern University, Evanston, IL 60208, USA.
Sci Adv. 2020 Aug 28;6(35):eabb1093. doi: 10.1126/sciadv.abb1093. eCollection 2020 Aug.
Implantable drug release platforms that offer wirelessly programmable control over pharmacokinetics have potential in advanced treatment protocols for hormone imbalances, malignant cancers, diabetic conditions, and others. We present a system with this type of functionality in which the constituent materials undergo complete bioresorption to eliminate device load from the patient after completing the final stage of the release process. Here, bioresorbable polyanhydride reservoirs store drugs in defined reservoirs without leakage until wirelessly triggered valve structures open to allow release. These valves operate through an electrochemical mechanism of geometrically accelerated corrosion induced by passage of electrical current from a wireless, bioresorbable power-harvesting unit. Evaluations in cell cultures demonstrate the efficacy of this technology for the treatment of cancerous tissues by release of the drug doxorubicin. Complete in vivo studies of platforms with multiple, independently controlled release events in live-animal models illustrate capabilities for control of blood glucose levels by timed delivery of insulin.
能够对药代动力学进行无线可编程控制的可植入药物释放平台,在激素失衡、恶性肿瘤、糖尿病等病症的先进治疗方案中具有潜力。我们展示了一种具有此类功能的系统,其中组成材料会经历完全生物降解,以便在释放过程的最后阶段完成后,消除患者体内的装置负荷。在此,可生物降解的聚酸酐储库将药物储存在特定的储库中,不会泄漏,直到无线触发的阀门结构打开以允许释放。这些阀门通过电化学机制运行,即由无线、可生物降解的能量收集单元传导的电流引发几何加速腐蚀。细胞培养评估表明,该技术通过释放阿霉素治疗癌组织具有有效性。在活体动物模型中对具有多个独立控制释放事件的平台进行的完整体内研究,说明了通过定时输送胰岛素来控制血糖水平的能力。