Gandomi Katie Y, Carvalho Paulo A W G, Tarasek Matthew, Fiveland Eric W, Bhushan Chitresh, Williams Emery, Neubauer Paul, Zhao Zhanyue, Pilitsis Julie, Yeo Desmond, Nycz Christopher J, Burdette Everette, Fischer Gregory S
IEEE Trans Biomed Eng. 2021 Jun;68(6):1838-1846. doi: 10.1109/TBME.2020.3023849. Epub 2021 May 21.
The primary objective of cancer intervention is the selective removal of malignant cells while conserving surrounding healthy tissues. However, the accessibility, size and shape of the cancer can make achieving appropriate margins a challenge. One minimally invasive treatment option for these clinical cases is interstitial needle based therapeutic ultrasound (NBTU). In this work, we develop a finite element model (FEM) capable of simulating continuous rotation of a directional NBTU applicator. The developed model was used to simulate the thermal deposition for different rotation trajectories. The actual thermal deposition patterns for the simulated trajectories were then evaluated using magnetic resonance thermal imaging (MRTI) in a porcine skin gelatin phantom. An MRI-compatible robot was used to control the rotation motion profile of the physical NBTU applicator to match the simulated trajectory. The model showed agreement when compared to experimental measurements with Pearson correlation coefficients greater than 0.839 when comparing temperature fields within an area of 12.6 mm radius from the ultrasound applicator. The average temperature error along a 6.3 mm radius profile from the applicator was 1.27 C. The model was able to compute 1 s of thermal deposition by the applicator in 0.2 s on average with a 0.1 mm spatial resolution and 0.5 s time steps. The developed simulation demonstrates performance suitable for real-time control which may enable robotically-actuated closed-loop conformal tumor ablation.
癌症干预的主要目标是在保留周围健康组织的同时选择性地清除恶性细胞。然而,癌症的可及性、大小和形状可能使获得合适的切缘成为一项挑战。对于这些临床病例,一种微创治疗选择是基于间质针的治疗性超声(NBTU)。在这项工作中,我们开发了一种有限元模型(FEM),能够模拟定向NBTU applicator的连续旋转。所开发的模型用于模拟不同旋转轨迹的热沉积。然后在猪皮明胶模型中使用磁共振热成像(MRTI)评估模拟轨迹的实际热沉积模式。使用与MRI兼容的机器人来控制物理NBTU applicator的旋转运动轮廓,以匹配模拟轨迹。当比较超声 applicator半径12.6毫米区域内的温度场时,该模型与实验测量结果显示出一致性,Pearson相关系数大于0.839。沿着 applicator半径6.3毫米轮廓的平均温度误差为1.27℃。该模型平均能够在0.2秒内计算 applicator 1秒的热沉积,空间分辨率为0.1毫米,时间步长为0.5秒。所开发的模拟展示了适用于实时控制的性能,这可能使机器人驱动的闭环适形肿瘤消融成为可能。