Suppr超能文献

D1-Glu189 和 D1-Glu329 在光系统 II 水分解 MnCa 簇形成 O 中的作用。

Roles of D1-Glu189 and D1-Glu329 in O Formation by the Water-Splitting MnCa Cluster in Photosystem II.

机构信息

Department of Biochemistry, University of California, Riverside, California 92521, United States.

出版信息

Biochemistry. 2020 Oct 13;59(40):3902-3917. doi: 10.1021/acs.biochem.0c00541. Epub 2020 Sep 29.

Abstract

During the catalytic step that precedes O-O bond formation in Photosystem II, a water molecule deprotonates and moves next to the water-splitting MnCa cluster's O5 oxo bridge. The relocated oxygen, known as O6 or O, may serve as a substrate, combining with O5 to form O during the final step in the catalytic cycle, or may be positioned to become a substrate during the next catalytic cycle. Recent serial femtosecond X-ray crystallographic studies show that the flexibility of D1-E189 plays a critical role in facilitating the relocation of O/O. In this study, the D1-E189G and D1-E189S mutations were characterized with FTIR difference spectroscopy. The data show that both mutations support MnCa cluster assembly, substantially inhibit advancement beyond the S state, and alter the network of H bonds that surrounds the MnCa cluster. Previously, the D1-E189Q, D1-E189K, and D1-E189R mutations were shown to have little impact on the activity, electron transfer rates, or spectral properties of Photosystem II. A rationale for this behavior is presented. The residue D1-E329 interacts with water molecules in the O1 water network that has been suggested recently to supply substrate during the catalytic cycle. Characterization of the D1-E329A mutant with FTIR difference spectroscopy shows that this mutation does not substantially perturb the structure of PSII or the water molecules whose O-H stretching modes change during the catalytic cycle. This result provides additional evidence that the water molecules whose vibrational properties change during the S to S transition are confined approximately to the region bounded by D1-N87, D1-N298, and D2-K317.

摘要

在光合作用系统 II 中 O-O 键形成的催化步骤中,一个水分子去质子化并移动到水分解 MnCa 簇的 O5 氧桥旁边。重新定位的氧,称为 O6 或 O,可能作为底物,与 O5 结合形成 O,这是催化循环的最后一步,或者可能在下一步催化循环中被定位为底物。最近的连续飞秒 X 射线晶体学研究表明,D1-E189 的灵活性在促进 O/O 的重定位中起着关键作用。在这项研究中,D1-E189G 和 D1-E189S 突变通过 FTIR 差谱进行了表征。数据表明,这两种突变都支持 MnCa 簇的组装,大大抑制了 S 态的进一步发展,并改变了围绕 MnCa 簇的氢键网络。以前,D1-E189Q、D1-E189K 和 D1-E189R 突变对光合作用系统 II 的活性、电子转移速率或光谱性质几乎没有影响。提出了这种行为的原理。残基 D1-E329 与最近提出的在催化循环中提供底物的 O1 水网络中的水分子相互作用。FTIR 差谱学对 D1-E329A 突变体的表征表明,该突变不会显著干扰 PSII 的结构或其 O-H 伸缩模式在催化循环中发生变化的水分子的结构。这一结果提供了额外的证据,即在 S 到 S 跃迁过程中振动性质发生变化的水分子大约被限制在由 D1-N87、D1-N298 和 D2-K317 限定的区域内。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验