文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

磁阻抗生物传感器灵敏度:影响与增强。

Magneto-Impedance Biosensor Sensitivity: Effect and Enhancement.

机构信息

Department of Neuroscience, The Alfred Centre, Central Clinical School, Monash University, Melbourne, Victoria 3004, Australia.

Department of Electrical and Electronic Engineering, Melbourne School of Engineering, The University of Melbourne, Victoria 3010, Australia.

出版信息

Sensors (Basel). 2020 Sep 12;20(18):5213. doi: 10.3390/s20185213.


DOI:10.3390/s20185213
PMID:32932740
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7570507/
Abstract

Biosensors based on magneto-impedance (MI) effect are powerful tools for biomedical applications as they are highly sensitive, stable, exhibit fast response, small in size, and have low hysteresis and power consumption. However, the performance of these biosensors is influenced by a variety of factors, including the design, geometry, materials and fabrication procedures. Other less appreciated factors influencing the MI effect include measuring circuit implementation, the material used for construction, geometry of the thin film sensing element, and patterning shapes compatible with the interface microelectronic circuitry. The type magnetic (ferrofluid, Dynabeads, and nanoparticles) and size of the particles, the magnetic particle concentration, magnetic field strength and stray magnetic fields can also affect the sensor sensitivity. Based on these considerations it is proposed that ideal MI biosensor sensitivity could be achieved when the sensor is constructed in sandwich thick magnetic layers with large sensing area in a meander shape, measured with circuitry that provides the lowest possible external inductance at high frequencies, enclosed by a protective layer between magnetic particles and sensing element, and perpendicularly magnetized when detecting high-concentration of magnetic particles.

摘要

基于磁阻抗(MI)效应的生物传感器是生物医学应用的有力工具,因为它们具有高灵敏度、稳定性、快速响应、体积小、滞后和功耗低等优点。然而,这些生物传感器的性能受到多种因素的影响,包括设计、几何形状、材料和制造工艺。其他不太受关注的影响 MI 效应的因素包括测量电路的实现、用于构建的材料、薄膜传感元件的几何形状以及与接口微电子电路兼容的图案形状。磁性(铁磁流体、Dynabeads 和纳米颗粒)和颗粒的大小、颗粒的浓度、磁场强度和杂散磁场也会影响传感器的灵敏度。基于这些考虑,提出了当传感器采用具有大感应面积的曲折形状的三明治厚磁层构建,用提供最低外部电感的电路在高频下进行测量,用保护层将磁颗粒和传感元件隔开,并且在检测高浓度磁颗粒时垂直磁化时,理想的 MI 生物传感器灵敏度可以实现。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a26/7570507/3c5ad885ea0e/sensors-20-05213-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a26/7570507/bd1c911c6801/sensors-20-05213-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a26/7570507/5e8d47cdb492/sensors-20-05213-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a26/7570507/f3286f6d72f3/sensors-20-05213-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a26/7570507/0b67dfdc092e/sensors-20-05213-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a26/7570507/1a14d168c10f/sensors-20-05213-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a26/7570507/00d2075ed339/sensors-20-05213-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a26/7570507/3c5ad885ea0e/sensors-20-05213-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a26/7570507/bd1c911c6801/sensors-20-05213-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a26/7570507/5e8d47cdb492/sensors-20-05213-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a26/7570507/f3286f6d72f3/sensors-20-05213-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a26/7570507/0b67dfdc092e/sensors-20-05213-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a26/7570507/1a14d168c10f/sensors-20-05213-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a26/7570507/00d2075ed339/sensors-20-05213-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a26/7570507/3c5ad885ea0e/sensors-20-05213-g007.jpg

相似文献

[1]
Magneto-Impedance Biosensor Sensitivity: Effect and Enhancement.

Sensors (Basel). 2020-9-12

[2]
Meander Thin-Film Biosensor Fabrication to Investigate the Influence of Structural Parameters on the Magneto-Impedance Effect.

Sensors (Basel). 2021-9-29

[3]
A Uniform Magnetic Field Generator Combined with a Thin-Film Magneto-Impedance Sensor Capable of Human Body Scans.

Sensors (Basel). 2022-4-19

[4]
The Performance of the Magneto-Impedance Effect for the Detection of Superparamagnetic Particles.

Sensors (Basel). 2020-3-31

[5]
Magnetic impedance biosensor: A review.

Biosens Bioelectron. 2016-10-20

[6]
Microfluidic Detection of SPIONs and Co-Ferrite Ferrofluid Using Amorphous Wire Magneto-Impedance Sensor.

Sensors (Basel). 2024-7-28

[7]
Nondestructive Detection of Magnetic Contaminant in Aluminum Casting Using Thin Film Magnetic Sensor.

Sensors (Basel). 2021-6-12

[8]
An efficient biosensor made of an electromagnetic trap and a magneto-resistive sensor.

Biosens Bioelectron. 2014-3-28

[9]
Magnetoimpedance Thin Film Sensor for Detecting of Stray Fields of Magnetic Particles in Blood Vessel.

Sensors (Basel). 2021-5-22

[10]
Permalloy-Based Thin Film Structures: Magnetic Properties and the Giant Magnetoimpedance Effect in the Temperature Range Important for Biomedical Applications.

Sensors (Basel). 2017-8-17

引用本文的文献

[1]
Signal Differentiation of Moving Magnetic Nanoparticles for Enhanced Biodetection and Diagnostics.

Biosensors (Basel). 2025-2-17

[2]
Advances in Aptamer-Based Biosensors for the Detection of Foodborne Mycotoxins.

Molecules. 2024-8-22

[3]
Microfluidic Detection of SPIONs and Co-Ferrite Ferrofluid Using Amorphous Wire Magneto-Impedance Sensor.

Sensors (Basel). 2024-7-28

[4]
Magnetoimpedance Biosensors and Real-Time Healthcare Monitors: Progress, Opportunities, and Challenges.

Biosensors (Basel). 2022-7-12

[5]
Design and Optimisation of Elliptical-Shaped Planar Hall Sensor for Biomedical Applications.

Biosensors (Basel). 2022-2-10

[6]
Approaches on Ferrofluid Synthesis and Applications: Current Status and Future Perspectives.

ACS Omega. 2022-1-21

[7]
Meander Thin-Film Biosensor Fabrication to Investigate the Influence of Structural Parameters on the Magneto-Impedance Effect.

Sensors (Basel). 2021-9-29

[8]
Modelling and Measurement of Magnetically Soft Nanowire Arrays for Sensor Applications.

Sensors (Basel). 2020-12-22

本文引用的文献

[1]
Dehydration assessment via a portable, single sided magnetic resonance sensor.

Magn Reson Med. 2020-4

[2]
Evaluation of In-Flow Magnetoresistive Chip Cell-Counter as a Diagnostic Tool.

Biosensors (Basel). 2019-8-31

[3]
Magnetic impedance biosensor: A review.

Biosens Bioelectron. 2016-10-20

[4]
Comparison of two fabricated aptasensors based on modified carbon paste/oleic acid and magnetic bar carbon paste/Fe3O4@oleic acid nanoparticle electrodes for tetracycline detection.

Biosens Bioelectron. 2016-5-17

[5]
Lab-on-a-disc agglutination assay for protein detection by optomagnetic readout and optical imaging using nano- and micro-sized magnetic beads.

Biosens Bioelectron. 2016-5-7

[6]
Magnetic immunoassay for cancer biomarker detection based on surface-enhanced resonance Raman scattering from coupled plasmonic nanostructures.

Biosens Bioelectron. 2016-4-5

[7]
A universal magnetic ferrofluid: Nanomagnetite stable hydrosol with no added dispersants and at neutral pH.

J Colloid Interface Sci. 2016-4-15

[8]
Chemiluminescence resonance energy transfer imaging on magnetic particles for single-nucleotide polymorphism detection based on ligation chain reaction.

Biosens Bioelectron. 2014-10-17

[9]
Planar Hall magnetoresistive aptasensor for thrombin detection.

Biosens Bioelectron. 2014-3-27

[10]
An integrated giant magnetoimpedance biosensor for detection of biomarker.

Biosens Bioelectron. 2014-3-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索