文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

磁阻抗生物传感器和实时医疗保健监测器:进展、机遇和挑战。

Magnetoimpedance Biosensors and Real-Time Healthcare Monitors: Progress, Opportunities, and Challenges.

机构信息

Laboratory for Advanced Materials and Sensors, Department of Physics, University of South Florida, Tampa, FL 33620, USA.

Department of Biomedical Engineering, University of South Florida, Tampa, FL 33620, USA.

出版信息

Biosensors (Basel). 2022 Jul 12;12(7):517. doi: 10.3390/bios12070517.


DOI:10.3390/bios12070517
PMID:35884320
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9313129/
Abstract

A small DC magnetic field can induce an enormous response in the impedance of a soft magnetic conductor in various forms of wire, ribbon, and thin film. Also known as the giant magnetoimpedance (GMI) effect, this phenomenon forms the basis for the development of high-performance magnetic biosensors with magnetic field sensitivity down to the picoTesla regime at room temperature. Over the past decade, some state-of-the-art prototypes have become available for trial tests due to continuous efforts to improve the sensitivity of GMI biosensors for the ultrasensitive detection of biological entities and biomagnetic field detection of human activities through the use of magnetic nanoparticles as biomarkers. In this review, we highlight recent advances in the development of GMI biosensors and review medical devices for applications in biomedical diagnostics and healthcare monitoring, including real-time monitoring of respiratory motion in COVID-19 patients at various stages. We also discuss exciting research opportunities and existing challenges that will stimulate further study into ultrasensitive magnetic biosensors and healthcare monitors based on the GMI effect.

摘要

弱磁场会在各种形式的线材、带状线和薄膜软磁导体的阻抗中产生巨大的响应,这种现象被称为巨磁阻抗(GMI)效应,它为开发高性能磁生物传感器奠定了基础,这种传感器在室温下的磁场灵敏度可低至皮特斯拉级。在过去的十年中,由于不断努力提高 GMI 生物传感器的灵敏度,以便通过使用磁性纳米粒子作为生物标志物来对生物实体进行超灵敏检测和对人体活动的生物磁检测,一些最先进的原型已可用于试用测试。在本文中,我们重点介绍了 GMI 生物传感器的最新进展,并回顾了用于生物医学诊断和医疗保健监测的医疗设备,包括在 COVID-19 患者的各个阶段实时监测呼吸运动。我们还讨论了令人兴奋的研究机会和现有挑战,这些机会和挑战将激发对基于 GMI 效应的超灵敏磁生物传感器和医疗监测器的进一步研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c879/9313129/1cc2021370fa/biosensors-12-00517-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c879/9313129/434c2bfaa9b5/biosensors-12-00517-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c879/9313129/3111b0f010b0/biosensors-12-00517-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c879/9313129/d7feef6bf7db/biosensors-12-00517-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c879/9313129/82ab57ddef8c/biosensors-12-00517-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c879/9313129/903e5085a0d7/biosensors-12-00517-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c879/9313129/9854ff1e5700/biosensors-12-00517-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c879/9313129/f65c4a49f891/biosensors-12-00517-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c879/9313129/614cff8c8a04/biosensors-12-00517-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c879/9313129/5a37b2237871/biosensors-12-00517-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c879/9313129/6358b1e44858/biosensors-12-00517-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c879/9313129/12c39b737074/biosensors-12-00517-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c879/9313129/1cc2021370fa/biosensors-12-00517-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c879/9313129/434c2bfaa9b5/biosensors-12-00517-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c879/9313129/3111b0f010b0/biosensors-12-00517-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c879/9313129/d7feef6bf7db/biosensors-12-00517-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c879/9313129/82ab57ddef8c/biosensors-12-00517-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c879/9313129/903e5085a0d7/biosensors-12-00517-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c879/9313129/9854ff1e5700/biosensors-12-00517-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c879/9313129/f65c4a49f891/biosensors-12-00517-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c879/9313129/614cff8c8a04/biosensors-12-00517-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c879/9313129/5a37b2237871/biosensors-12-00517-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c879/9313129/6358b1e44858/biosensors-12-00517-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c879/9313129/12c39b737074/biosensors-12-00517-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c879/9313129/1cc2021370fa/biosensors-12-00517-g012.jpg

相似文献

[1]
Magnetoimpedance Biosensors and Real-Time Healthcare Monitors: Progress, Opportunities, and Challenges.

Biosensors (Basel). 2022-7-12

[2]
Permalloy-Based Thin Film Structures: Magnetic Properties and the Giant Magnetoimpedance Effect in the Temperature Range Important for Biomedical Applications.

Sensors (Basel). 2017-8-17

[3]
Magnetic impedance biosensor: A review.

Biosens Bioelectron. 2016-10-20

[4]
Plasmonic Biosensors with Nanostructure for Healthcare Monitoring and Diseases Diagnosis.

Sensors (Basel). 2022-12-31

[5]
Magnetoimpedance of CoFeCrSiB Ribbon-Based Sensitive Element with FeNi Covering: Experiment and Modeling.

Sensors (Basel). 2021-10-10

[6]
Magnetic Dynabeads detection by sensitive element based on giant magnetoimpedance.

Biosens Bioelectron. 2005-2-15

[7]
Surface modified amorphous ribbon based magnetoimpedance biosensor.

Biosens Bioelectron. 2007-4-15

[8]
A Model for the Magnetoimpedance Effect in Non-Symmetric Nanostructured Multilayered Films with Ferrogel Coverings.

Sensors (Basel). 2021-7-29

[9]
Flexible Plasmonic Biosensors for Healthcare Monitoring: Progress and Prospects.

ACS Nano. 2021-12-28

[10]
Neuro-genetic system for optimization of GMI samples sensitivity.

Neural Netw. 2016-3

引用本文的文献

[1]
Biosensors, Artificial Intelligence Biosensors, False Results and Novel Future Perspectives.

Diagnostics (Basel). 2025-4-18

[2]
Signal Differentiation of Moving Magnetic Nanoparticles for Enhanced Biodetection and Diagnostics.

Biosensors (Basel). 2025-2-17

[3]
Microfluidic Detection of SPIONs and Co-Ferrite Ferrofluid Using Amorphous Wire Magneto-Impedance Sensor.

Sensors (Basel). 2024-7-28

[4]
Transition Metal Dichalcogenides: Making Atomic-Level Magnetism Tunable with Light at Room Temperature.

Adv Sci (Weinh). 2024-2

[5]
Giant Magnetoimpedance Effect of Multilayered Thin Film Meanders Formed on Flexible Substrates.

Micromachines (Basel). 2023-5-6

[6]
Microfluidics for Biomedical Applications.

Biosensors (Basel). 2023-1-20

[7]
Study on Detection of a Small Magnetic Particle Using Thin Film Magneto-Impedance Sensor with Subjecting to Strong Normal Field.

Micromachines (Basel). 2022-7-28

本文引用的文献

[1]
Magnetoimpedance Thin Film Sensor for Detecting of Stray Fields of Magnetic Particles in Blood Vessel.

Sensors (Basel). 2021-5-22

[2]
Bioimpedance Spectroscopy: Basics and Applications.

ACS Biomater Sci Eng. 2021-6-14

[3]
Magneto-Impedance Biosensor Sensitivity: Effect and Enhancement.

Sensors (Basel). 2020-9-12

[4]
Detection and analysis of nucleic acid in various biological samples of COVID-19 patients.

Travel Med Infect Dis. 2020-4-18

[5]
The Performance of the Magneto-Impedance Effect for the Detection of Superparamagnetic Particles.

Sensors (Basel). 2020-3-31

[6]
Ultrasensitive Magnetic Field Sensors for Biomedical Applications.

Sensors (Basel). 2020-3-11

[7]
Noise Modeling and Simulation of Giant Magnetic Impedance (GMI) Magnetic Sensor.

Sensors (Basel). 2020-2-11

[8]
Advances in Magnetoresistive Biosensors.

Micromachines (Basel). 2019-12-26

[9]
Magnetic Functionalized Nanoparticles for Biomedical, Drug Delivery and Imaging Applications.

Nanoscale Res Lett. 2019-5-30

[10]
An integrated magnetic microfluidic chip for rapid immunodetection of the prostate specific antigen using immunomagnetic beads.

Mikrochim Acta. 2019-3-22

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索