College of Information Engineering, China Jiliang University, Hangzhou, China.
Department of Clinical Science, Karolinska Institutet, Intervention and Technology, Stockholm, Sweden.
PLoS One. 2020 May 4;15(5):e0232127. doi: 10.1371/journal.pone.0232127. eCollection 2020.
In this study, we proposed a novel convolutional neural network (CNN) architecture for classification of benign and malignant breast cancer (BC) in histological images. To improve the delivery and use of feature information, we chose the DenseNet as the basic building block and interleaved it with the squeeze-and-excitation (SENet) module. We conducted extensive experiments with the proposed framework by using the public domain BreakHis dataset and demonstrated that the proposed framework can produce significantly improved accuracy in BC classification, compared with the state-of-the-art CNN methods reported in the literature.
在这项研究中,我们提出了一种新的卷积神经网络(CNN)架构,用于对组织学图像中的良性和恶性乳腺癌(BC)进行分类。为了提高特征信息的传递和使用效率,我们选择 DenseNet 作为基本构建块,并将其与 squeeze-and-excitation(SENet)模块交错。我们使用公共领域的 BreakHis 数据集对所提出的框架进行了广泛的实验,并证明与文献中报道的最先进的 CNN 方法相比,所提出的框架可以显著提高 BC 分类的准确性。