Suppr超能文献

基于深度基因组图的高光谱图像分类。

Hyperspectral Image Classification Using Deep Genome Graph-Based Approach.

机构信息

School of Information Engineering, Zhengzhou University, No. 100 Science Avenue, Zhengzhou 450001, China.

Henan Xintong Intelligent IOT Co., Ltd., No. 1-303 Intersection of Ruyun Road and Meihe Road, Zhengzhou 450007, China.

出版信息

Sensors (Basel). 2021 Sep 28;21(19):6467. doi: 10.3390/s21196467.

Abstract

Recently developed hybrid models that stack 3D with 2D CNN in their structure have enjoyed high popularity due to their appealing performance in hyperspectral image classification tasks. On the other hand, biological genome graphs have demonstrated their effectiveness in enhancing the scalability and accuracy of genomic analysis. We propose an innovative deep genome graph-based network (GGBN) for hyperspectral image classification to tap the potential of hybrid models and genome graphs. The GGBN model utilizes 3D-CNN at the bottom layers and 2D-CNNs at the top layers to process spectral-spatial features vital to enhancing the scalability and accuracy of hyperspectral image classification. To verify the effectiveness of the GGBN model, we conducted classification experiments on Indian Pines (IP), University of Pavia (UP), and Salinas Scene (SA) datasets. Using only 5% of the labeled data for training over the SA, IP, and UP datasets, the classification accuracy of GGBN is 99.97%, 96.85%, and 99.74%, respectively, which is better than the compared state-of-the-art methods.

摘要

最近开发的混合模型在其结构中堆叠了 3D 和 2D CNN,由于它们在高光谱图像分类任务中的出色表现而受到了广泛关注。另一方面,生物基因组图谱在提高基因组分析的可扩展性和准确性方面已经证明了其有效性。我们提出了一种基于深度基因组图的新型网络 (GGBN) 用于高光谱图像分类,以挖掘混合模型和基因组图的潜力。GGBN 模型利用底层的 3D-CNN 和顶层的 2D-CNN 来处理对提高高光谱图像分类的可扩展性和准确性至关重要的光谱-空间特征。为了验证 GGBN 模型的有效性,我们在 Indian Pines (IP)、University of Pavia (UP) 和 Salinas Scene (SA) 数据集上进行了分类实验。仅使用 SA、IP 和 UP 数据集上标记数据的 5%进行训练,GGBN 的分类准确率分别为 99.97%、96.85%和 99.74%,优于比较的最先进方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验